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ABSTRACT ;o
24954

(N /
Two methods based on different concepts are presented for solving bounded phase-
coordinate time-optimal control problems. One method originates from Pontryagin's
maximum principle and jump conditions in the modified adjoint solution. The com-
putational scheme for this method is derived from sufficiency conditions. The other
method is based on the introduction of a measure of excursion of phase-trajectories
outside their restraint sets and gives an approximate solution. The computational
procedure for this method is developed from the necessary and sufficient conditions
which are relatively easy to apply. The method is extended to the solution of
optimal problems with integral cost. An on-line analog computer program is
developed which proves satisfactory for time-optimal problems with no phase-
coordinate bounds, but not directly applicable for problems with bounds. The
cause of the difficulty is revealed by an analysis. Areas for further investigation
on the bounded phase-coordinate optimal control problems are also outlined.
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CHAPTER 1
INTRODUCTION

1.1 HISTORICAL DEVELOPMENT

Bounded phase-coordinate probl ems arise naturally in many practical applications.
In many flight vehicles, engine deflection, angle of attack and bending moment
contribute to the phase-coordinate constraints. Asan example, if the controller
input is engine gimbal rate, the engine displacement may be considered as a
phase-coordinate of the dynamical system. Normally, the allowable engine dis-
placements are small; an efficient use of the available control input often de-
mands operating on the engine displacement limit. Unfortunately, such intuition
is not always correct. The efficient use of the control input implies not only
operating at the displacement limit, but also considering the displacement limit
explicitly in the over-all design of the controller. The term "efficient use' can
be specifically defined by a given minimization criterion, and problems of ihis
type are called optimal control problems with phase-coordinate inequality con-

straints.

As indicated by Bolza [1, pp. 125—126] , Weierstrass formulated the analogous
problems of calculus of variations with phase-coordinate inequality constraints
in 1882, and developed the "corner' conditions for the two-dimensional Lagrange
problems. The "corner' conditions deal with the discontinuities of the solutions
of the analogous problems. According to Bliss {2, p. 43] , the necessary and
sufficient conditions for a minimum solution were studied subsequently by
Carathéodory, Bolza, Dresden, Graves, Reid, Smiley, Bliss, and Underhill.
Most of the studies were completed between 1904 and 1937.



In 1961, Berkovitz [3] reduced the general control problem with constraints

to a problem of calculus of variations. In his discussion, a translation of
necessary conditions for the problem of calculus of variations into the necessary
conditions for the optimal control was established, including the application of
Pontryagin's maximum principle [4] . His results, however, are not applicable
to control problems with phase-coordinate inequality constraints that do not
explicitly involve the control variable,. In an independent study, Gamkrelidze
[5, also Chapter VI of 4] treated the latter problem entirely based on the
maximum principle. Berkovitz [6] then showed that Gamkrelidze's results can
be achieved by solving the relevant problem of calculus of variations. Dreyfus
[7] studied the same problem by means of the dynamic programming formula-
tion. His results are in agreement with that of Berkovitz [8] . Among all the
studies, sufficiency conditions were virtually ignored. For the practical appli-
cations, even when solutions do exist, the necessary conditions derived by

various authors are difficult to apply.

During 1961-1962, Chang derived a simpler necessary condition for a more
restricted class of problems [9} , and existence theorems based on the exten-
sion of Ascoli's Theorem [10] . For linear time-optimal control systems with
convex restraint set, the necessary condition is also the sufficient condition.
The result, however, was not adequately proved. An elegant proof of the
necessity of the condition can be deduced from Neustadt's recent work [27] ,
while a rigorous procf of the sufficiency will be shown in Chapter 3. This
condition is an improvement on Gamkrelidze's result. It establishes the fact
that the normal vector appearing in the modified adjoint differential equation
is always outward with respect to the set of attainability, and hence the neces-

sary and sufficient condition is relatively easy to apply.

As to the computational aspects of the problem, there are essentially two
classes of methods. One class is the direct method which includes the method
of the gradient, steepest-descent or their equivalent. This method was studied
by Dreyfus [7] , Denham [11, 12] and Bryson [1 3] , using the necessary con-

ditions of the optimal control, and by Paiewonsky, et. al. {14}, using conditions
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both of the optimal control and from the calculus of variations. The other
class is the indirect method which was discussed by Kahne [15] , Ho and
Brentani [16], and Nagata, et. al. [17]. Each method has its advantages

and disadvantages; and, in general, neither one is the best method.

PROBLEM STATEMENT

The general problem of interest is stated as follows. Given a linear control

process as described by the differential system
x = A(t) x + B(t) u(t) . (1)

where x and u{t) are n-dimensional state vector and m-dimensional control
vector, respectively, A(t) and B(t) are n by n and n by m matrices of
measurable functions for t in some interval [to, tl] . Let G be a closed
convex subset of E" and(be a compact convex subset of E™. Let the cost

ol A S e =Y A
1uwiCcLionar O

Clu) = g[x(tl)] + ftl [£ 6 0+ b, 0] at (2)
t
o

where f° (x, t) and h° (u, t) are real-valued, non-negative, convex and con-
tinously differentiable functions with respect to t, while g is convex and
differentiable. The general problem of optimal control of bounded phase-
coordinate systems is to choose an admissible control u(t) € @ on the time
interval [to’ tl] which steers the system (1) from its given initial state

x(t)) = x  attime t_toa closed target set G < G at time t,, such that

the response x(t) < G for all t e[to, t ] and the cost functional is a minimum.

1
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The general problem described above is difficult tosolve. Instead, solutions
of more restricted classes of problems were attempted which yield relatively
simple results. Approximate solutions were also considered. These are

outlined in the following section.

METHOD OF SOLVING THE PROBLEM

The first question that needs to be answered is '"Under what conditions does
such an admissible control exist?'' Chang [10] discussed the existence theorems
thoroughly. However, the fundamental requirement of the compactness of the
set of allowed ''control-and-path" pairs (u, x) was not clearly presented. The
subject is re-examined rigorously in Chapter 2, With the value of g(x) in
Equation (2) chosen as constant and f° + h® as unity, the problem is reduced to
a problem of time-optimal control. This subject is specifically discussed in
Chapter 3, in which a sufficiency theorem for the optimum control is estab-
lished. Using this theorem, a computational scheme by means of "backing
out' procedure is derived and illustrated by a numerical example. Uniqueness
theorems are also given for various restraint sets in the phase-coordinate

system,

A method of approximate solution based on an entirely different concept is

given in Chapter 4. The solution obtained by this method allows excursions

of the phase-coordinate trajectories outside their restraint sets. The excur-
sions can be adjusted to be as small as pleased and thereby the trajectory so
determined approximates the solution obtained by the method given in Chapter

3. The necessary and sufficient conditions upon which the computational scheme
is proposed are given and illustrated by a numerical example. A brief discus-
sion is also given for the optimum problem when g(x) and f> + h° are not con-

stants. This problem is later discussed in detail in Chapter 7.




Chapter 5 describes an analog computational scheme which mechanizes Neu-
stadt's algorithm [18} for an on-line computation. The program worked well
for a time-optimal problem with no constraints in phase-coordinates but failed
when applied to the problem of bounded phase-coordinate as proposed in
Chapter 4. The implementation of the approximate solution on the analog com-
puter for an on-line operation is then discussed in Chapter 6. The main diffi-
culty lies in the existence of singular arcs in the adjoint solution which is also

illustrated in the example given in Chapter 4.

Chapter 8 summarizes the results of the studies on bounded phase-coordinate

optimal control and recommends areas of further investigation.



CHAPTER 2

FUNDAMENTAL REQUIREMENT FOR THE EXISTENCE OF
OPTIMAL CONTROLS IN BOUNDED PHASE-COORDINATE SYSTEMS

2.1 INTRODUCTION

2.

2

The problem of the existence of optimal controls in bounded phase-coordinate
systems was discussed by Chang [10, pPpP- 3—37]. His results are constructed
on the basis of the compactness of the set of all allowed ''control-and-path"
pairs, This fundamental proposition was given as Theorem 3 in his report
[10, PP. 15—18]. Although his sufficiency conditions for the resulting exist-

ence theorems are correct, the proof of Theorem 3 is not clear.

In this chapter, the proposition of the compactness of the set of all allowed
"control-and-path'' pairs is re-examined. A rigorous treatment within the
framework of currently used mathematics [19] of this topic is presented. After
necessary preliminaries, an extension of Ascoli's Theorem is proved and is

then applied in the proof of a theorem which is analogous to Chang's Theorem 3.

AN EXTENSION OF ASCOLI'S THEOREM

The following definitions and lemmas [19] are needed in the extension of Ascoli's

Theorem:

Definition 1.

A family of n-vector functions, {w(t)} , on an interval, T, is said to be piece-

wise equicontinuous if:




(i) Each w(t) is piecewise continuous on T, i.e., continuous
except at finitely many points in T, where it may or may

not be defined.

(ii) Given € >0, there exists § >0 such that for any w(t) € {w(t)} s
if t1 and t2 lie in an open interval in which w(t) is continuous
and \tl - tzl < 6, then il w(tl) - w(tz) “ < ¢. Here, “w(t)"

denotes the Euclidian norm of the n-vector, w(t).

Definition 2.

A sequence, {wk(t)} , of n-vector functions is said to converge almost uniformly
on T to the n-vector function, w(t), if for each & > 0 it ispossible to select a
measurable set, N5 , whose measure is less than §, such that {wk(t)} converges

uniformly to w(t) on T-Na.

Defirition 3.

Let X denote the set of all n-vector functions defined on T. For a given mem-
ber, wi{t), of X, define the (g, 6) neighborhood, N [e,é, w(t)], to be the class
of all members, \;v(t), of X, such that “w(t) - w:v(t) “ < ¢, except on a measur-
able set of measure less than 6. The resulting topology will be called the A. U.

(almost uniform) topology of X.

Lemma 1.

If a sequence, {wk(t)} , converges to w(t) in the A. U. topology, then it con-

verges to w(t) almost uniformly and conversely.




Proof: Choose 6 > 0. Since {wk(t)} converges to w(t) in the A. U. topology,

it is possible to choose for each integer, n >0, another integer, 8 (n) >0,
@®

such that for K 2 3(n), we have wk(t) e N —1-, S , wit)|. Let N = U
n-oon n=1
1 &
N o ?1 , W(t)J

Then, the measure of N is, at most, §, and for t¢ T - N and K 2z 8(n),
Hwk(t) -wit) || < rll_ Consequently, wk(t) converges to w(t) in the A. U.
topology since & was arbitrary. The converse is obvious from the definition

of almost uniform convergence.

The following theorem gives results which are essential in the extension of

Ascoli's theorem (Theorem 2):

Theorem 1.

Let B denote a closed, uniformly bounded set of piecewise equicontinuous

functions on the interval, T. Assume that:

(i) There is an integer, N 2 0, such that w(t) ¢ B = w(t) has,

at most, N discontinuities in T.

(ii) T 1is bounded, 1i.e., there is a positive real number, R, such
that te T => |t|<R.

Then, B is sequentially compact in the A. U. topology.




Proof:

Let {w (t)} be any infinite sequence of members of B. For each k assume

that N(k) £ N is the number of discontinuities of wk(t) in T. Now, define
T = (t E t FEREIR AR | t 2 t > t >
k kl k2 kN(k) N N

the first N(K) components are, in order, the points of discontinuity of wk(t).

tN) to be a vector such that

The remaining components, if any, are equal to the right hand endpoint of T,

The set, {Tk} , 1s a uniformly bounded set of points of RN. In fact, " Ty || S'\/T\I—R
for each k. By the Bolzano-Weierstrass Theorem there exists a subsequence,
Tk(l), which converges to a vector, T = (Tl, e TN). Let wk(l) (t) be the

corresponding subsequence of vector functions.

Now, choose & > 0 and let 16 be the closed subset of T such that if te 16’
then |t - T | 26, where T denote the endpoints of the interval, T. Then,

there is a K > 0 such that for k 2 K, the functions w 1) (t) are continuous

on 16' This result is a consequence of the fact that f01; k z K, the points of
discoentinuity lie within a distance, 0, of the limit, T = ('1'1 s een s T ). The
interval, 15, is a compact subset of the real numbers, and the functions,
wk(l) (t), are a uniformly bounded and equicontinuous family defined on 16'
Then, from the theorem of Ascoli, there is a subsequence, {wk(z
{wk<1) (t)} , which converges uniformly to a vector function, w( ) (t), on
16. Moreover, w (t) satisfies the same bounds and continuity hypothesis
as do the wk(t) on 16'

Let &, be a sequence of positive numbers such that §, = 6 and lim §,= 0,

3 1 e ¥
and let I be defined as above, replacing & by §,. Now, for each 4> 1, let
{ (1) (t)} be a subsequence of {Wk( )(t)} such that:

(i) {wk(LH) (t)} converges uniformly to some wt) (t) on Iy .
L

(ii) {wk(“'l) (t)} excludes wl(l') (t).



@
Let w(t) denote the function whose valueon te U I6 is the common value
1=1 "1
of all w“ (t) which are defined at t. Then, let {w*i (t)} be the subsequence of
{wk (t)} such that WL(t) = wl({’ﬂ) (t). Since 64,__>0’ this clearly implies that
w='i (t) converges almost uniformly to the function, w(t). The limit, w(t), is

clearly in B and the proof is completed.

Definition 4.

Let B be a uniformly bounded set of n-vector functions defined on a finite in-
terval, T. For each integer, M >0, let SM be a family of n-vector functions
such that SM € B and SM satisfies the hypothesis applied to the family B of
Theorem 1. The set of families, SM, is uniformly dense in the A. U. topology
of B if, givenany ¢ > 0 and 6 > 0, it is possible to find M(e, 6) such that

every w(t) € B lies in a (e, 6) neighborhood of some member of SM'

Theorem 2. (An extension of Ascoli's Theorem)

Let B be a uniformly bounded set of n-vector functions which is closed in its
A.U. topology and contains a uniformly dense set of families, SM' Then B

is sequentially compact in its A. U. topology.

Proof:

Let {wL (t)} be an infinite sequence in B, and let N> 0 be a small number.
Corresponding to the positive number, —nl'{ , let Mk be chosen so that

2
Mk+1 > Mk and each number of B lies in a (ﬁ{ s ﬁ{

For each 1, let SMk,L(t) be such a function in SM

neighborhood of some

member of SM .

k k

10




corresponding to Wt(t)' Since SM satisfies the hypothesis of Theorem 1
k
for each k, let {( 1} be a subsequence of the natural numbers such that SM , Ll (t)
1

converges almost uniformly to a function, SM (t). In general, let ’Lk+1 be a
1

subsequence of (L k} such that:

(i) {Lkﬂ} does not include the first member of Lk .

(ii) SM ‘ (t)} converges almost uniformly to SM (t) .
k+1 k+1
Let £+ denote the subsequence of the natural numbers which consists of the
first members of the {L k} . Then, for each Kk, {SM (t)} converges almost
k,1
(1). ’

uniformly to SMk

. ? N . E e b [ — ¢ .
Let 1y be chosen successively so that 4 >47 and 4% 2 L} 'SMkL' (t)

lies in the r]k , le neighborhood of S, (t). Now, assume that 4 2 L% and
- 2 2 k
LA {k Then the following inequalities hold:
i | W, (t) - SM W < uk except on a set of measure at
- k, L* 2
most i
2k
i) SM (t) - SM (9] Il < -%—_—1 except on a set of measure
Tk, 4 k,1" 2
at most i
no k-1
(iii) SM N £ I WZ* w < T—]R except on a setof measure at
k,2" 2
most "
0s K

11
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L

Consequently, from the triangle inequality, NWL* t) - w_, () I < )
2 2
except on a set of measure at most 13_2
2

Let E denote the union of these sets for all k. Then, from the countable sub-
additivity of lebesque measure, the measure of E is at most 4n. Clearly, the
sequence {WL* (t)} converges uniformly on T-E to w* (t). Now, take a

sequence, N, such that lim ﬂi = 0.
1 —>

By a now familiar diagonalization process, a subsequence, {WL (t)} , can be
found which converges almost uniformly on T to a function, w(t), which, since

B is closed, belongs to B. This completes the proof.

COMPACTNESS OF "CONTROL-AND-PATH'" PAIRS

In many control problems, one is given a system of first-order differential
equations of the type
.1 i .

x = f£( x,w, i=1,2,...,n (1)

where X is an n-vector and u is an m-vector. The functions, fl(t, X, u),

together with their partial derivatives, @ £
3%

single-valued, and continuous functions in the vector arguments, x, u, and the

scalar argument, t , on a product region, X1 xU1 x T, in R x R™ x Rl.

, 1, j =1, ..., n, are bounded,

X1 and U1 are closed regions in R" and R™ , respectively, and T isa
L, .o, wPm)
is a vector-valued measurable function defined on T with a graph in U1 .

compact interval in Rl. A control function, u(t) = [u

It follows from standard existence theorems that if x(t) is specified initially
and u(t) is a given control function, then there exists a unique, absolutely con-
tinuous solution, x(t), of Equation (1), which passes through the given initial
conditions [20] . The following definitions are introduced for the convenience
of discussion:

12




Definition 5.

Let £{t) be a function of a real variable defined on a compact interval,

T = [t t,]. Letm: t = §& < E,< e T t, be a partition of T.
Then, f{t) is said to be of bounded variation if
r
sup = f(Ek) -f(Ek_l) < 0.
k=1
AR
r

A vector function, g(t) = [gl(t), - (t)] , is of bounded variation if

each of its components are of bounded variation.

Definition 6.

Let A be a family of vector functions and suppose every member of A is of

bounded variation on an interval, T = [tys tol- Then, for each member,
f., of A,
i
r
supk2= . fLE)-f,E, )= M() < oo.
m
r

If there exists a number, M >0, such that M(f i)_<_Mfor each fi € A, then

A is said to be of uniform bounded variation.

The class of allowable controls is given in Definition 7.

15



Definition 7.

Let _c_U1 be a compact subset of R™ and let A be a family of uniform
bounded variation vector functions defined on T with range in Q. Further-
more, let X € X1 be a compact arc-wise connected subset of R". Thena
control, u(t) e A, is allowable with respect to X if the solution, x(t), of
Equation (1) satisfies the condition x(t)e X for t ¢ T.  Similarly, the solu-

tion of Equation (1) with an allowable control is called an allowable path.
The set of all allowable controls with respect to X, hereafter designated
as allowable, is denoted by ¢, and the set of all allowed paths by p. The
m +n vector, [u(t), x (t)] , denotes an allowable control-and-path pair

where u(t) is allowable and x(t) the corresponding allowed path. The set

of all control-and-path pairs is denoted by F.

A cost functional, c(u), is defined by the function, xo(t), te T, and is

given by
c(u) = x°(t2) - xo(tl) (2)

Note that T = [tl’ t2] .

An allowable control, ﬁ(t), is said to be optimal if

cu) = sup c(u)

ucA
The types of terminating conditions considered are as follows:

() If t2 is fixed but x(tz) is not specified, then the problem is

referred to as a free endpoint type.

1k




(ii) If x(tz) is specified and t2 is contained in a compact interval,
T = [tl, t3] , the problem is referred to as a fixed endpoint

problem.
Definition 8.
The set of optimal controls under the free endpoint condition is denoted as So’

and the set of optimal controls under a fixed endpoint condition is denoted as
N
5,(D.

The following lemma establishes the fact that A contains a uniformly dense

family of step functions:

Lemma 2.

The family, A, of allowable controls contains a uniformly dense set of
families of step functions.

Proof:

Let the bound on the variation of the members of A on Tbe M > 0. Let f(t)
€ A, and let ¢, 6 >0 be given. Let N be the least integer for which
M(t, - t.)
N > —2 b (3)
e b

15




Now, divide the interval, T, into N subintervals of equal length,
T.,1i =1, ..., N.
Define

a, = sup f(t), bi = inf  f(t) (4)

teT. T.
€T, ts:1

and let g(t) be a step function defined on T and given by
- 1 o
g(t) = 2(ai+bi),te'ri,1—1, ..., N. (5)

Since the maximum variation of f(t) is M, the number of intervals for which

. M
ai - bi > € 1s, at most, -

Consequently,
|1 -g®l = HEw -1 @ +b) 1< Ll (6)
2 i i - 2
-a, I+ L Ham -b
i 2 v i
<& 4 £ ¢ e with exception of, at most,M, intervals, whose measure is
202 M4, -t)) € M (t, - t.)
less than - 2 1’ . But, from (3), -~ 2 1’ < 6, hence, A

N N
contains a uniformly dense set of families of step functions. This concludes

the proof of LLemma 2.

16




Theorem 3.

The set, F, of all allowed control-and-path pairs in sequentially compact in
the almost uniform topology.

Proof:

Let [ u(t), x(t)] be an allowed control-and-path pair. Define n+m +1
dimensional vector function, w(t), as follows; w(t) = [u(t), x(t), xo(t)] ;
Let B be a set which contains infinitely many w(t) and let {.wk(t)} be a
sequence such that wk(t) ¢ B. From the hypothesis on the £ (t, x,u), and
from Lemma 2, we have that B is closed. From Lemma 2, B contains a
uniformly dense set of families, Sm. By Theorem 2, we can selecta

subsequence, { Wy (1) } , which converges to a limit function, w(t) =

[Wl(t), ce, wit(), w™ e, o, wm+n+1(t)] , in the almost
uniferm topology.
Let u(t) = [wl(t), Ce wm(t)] and x(t) = [wm +1(t), e, wn+m(t)] . Since
X was closed, [wm+1, e, wn+m(t)] e X, and, from Theorem 2, we can
conclude that [w'(t), ces wm(t)] e © almost everywhere on T. Let a (t)
be defined as follows:
u(t) where u(t) is defined, or
ufy) = u where u is any vector qeQ

on a subset of measure zero

where w (t) is not defined.

As a result, a e Q onT.
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The next step is to establish that w(t) is an allowed control-and-path pair,
Suppose for contradiction that there exists at least one t3, 1:1 < t3 < t2, for
which
Hx (tg) - [ £t X, U)dt - x (t) I>a>0 (7)
Y
for some a. The function, x, is the allowed path corresponding to u. The
function, f (t, X, u), being continuous on a compact set, X x Q x T, is

uniformly continuous, and hence, for any ¢ > 0, it is possible to find 6 (¢) >0

such that
e, x, u) - £( x, 0,) 1< ¢
if
Il x-x < 6(e)
. (8)
Hu-ull < & ().
Define M = max [1£(t, x, u I,
Xx Qx T
a
e = —J (9)
3(t2-t1)
e = min (%, 6()] ,
- i
61 6M
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From Theorem 2, there is a (61, el) neighborhood in the almost uniform topo-
logy such that if k > N1 (61, el), then

1 % @ xm 1< & (10)

ug(t) 1 < 3

except on a set of measure less than ¢ Here, uk(t) and xk(t) are an allowed

control-and-path pair from { w, (t) } which from definition satisfy
P k

t
X(tl) +[ f (, Xy uk) dt.

x () =
Bl
Now,
(t3
0<a<ilxity - J £4 %, B dt-x ) Il x(tg)
t .
1 (11)
t3
- X, 1) - |
x, (ta) 1!+ f e, 3 @ - £, %, w) 11 at,
Y
Now, if k is chosen sufficiently large, one gets from (10) that
| - | a
Wxteg) - x (e 1 < 5 (12)

Furthermore, since X =X and y ~u except on a set of measure less

than 61, call it E, one obtains from (11) the following inequality:

19




t3 Y
jllf(t, x, u) dt - f (t, xk,uk,)ndtsf Il £(t, %, Q)

Y Y

S £t x, w) ] de € fu £(t, X, - £ x, w)l| dt 03
E

+fH Bt %, 0) - £t x, u)lldt < 2M 5,
T-E

toelty -t = —

Hence, from (11), (12), (13), one gets the inequality
t
- 3 .. a 2a
0<ac<ll x (t3)-ff(t, X, u)dt-x(tl)H < §+—3— = a,

Y

This is obviously a contradiction and

-~ 3 ~ -~
X (t3) = f f(t, x, u) dt + x (tl)

Y

for all t; ¢ T. From the Lebesgue differentiation theorem, x(t) is a solution

of the system and hence is an allowed control-and-path pair. This completes
the proof.

2.4 CONCLUSION

Theorem 3 givenin the preceding section established the compactness of the

"control-and-path'" pairs. The theorem is analogous to Chang's Theorem 3




{10, p. 15] . This result is a fundamental requirement for the proof of
existance theorems for optimal control with bounded phase-coordinates

as shown in Reference 10.
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CHAPTER 3

TIME-OPTIMAL BOUNDED PHASE-COORDINATE
CONTROL OF LINEAR SYSTEMS

3.1 INTRODUCTION

This chapter discusses time-optimal bounded phase-coordinate control of

linear systems of the form

x = A(t)x + B(t)u.
The basic ideas have been gleaned from the sources listed in the references;
very little is entirely new. These results have been obtained from a study of
two papers by Chang, [9] , [10] . Chang's ideas are very fruitful but his
mathematical proofs are apparently incorrect.
It is shown that the results presented here place the problem of time-optimal

control of linear systems with convex phase constraints in a position where

calculation of trajectories by the "backing out" procedure is feasible.
3.2 PROBLEM STATEMENT
In this section, the problem treated herein will be precisely described.
The control system has the form
x = A(x + Blu = fx,u,1). (12)
Vectors x and f (x,u,t) are n-dimensional while the vector, u, is m-
dimensional. A(t) is a measurable n by n matrix function for t in some

interval, [To' Tl] of Rl, while B(t) is a measurable n by m matrix func-

tion on the same domain. It is assumed that m < n.
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[¥V]

Let G be a closed convex subset of E with non-empty interior. G is not
necessarily compact. x and x, are points in Int(G) such that X, # x;. Let
( be a compact convex subset of E™ with non-empty interior. A measurable
m-vector function, u(t), defined on a subinterval, [to’ tu] , of [To, Tl] , is

an admissible control relative to tS and the point X, €G if:

(i) u(t) €  for each tin [to, tu];

(ii) The solution x(t) of Equation (14) with x(to) = x, and u replaced by
u(t) lies in G on the interval, [to’ tu] .

The cost of an admissible control, u(t), is denoted C(u) and is equal to
tu - to.

The problem is as follows: Let U denote the class of all admissible controls,
u(t), defined on intervals [to, tu] of [To’ Tl] relative to to and the point X
with the additional property that tu is the first time at which the corresponding
sclution, x(t), of Equation (14), with x(to) = X is equal to X4 Assuming U is .
non-empty, find a member u(t) of U such that for all u(t) € U, C() < C(u), i.e.,
tﬁ < tu. This problem will, for brevity, be called the problem, P, and a(t),

if it exists, will be called an optimal control for the problem, P.

PRELIMINARY CONCEPTS AND NOTATION

Throughout this chapter, t, and X will remain fixed, Therefore, instead of
saying that a control, u(t), is admissible relative to to and X it will simply
be said that u(t) is admissible., Whenever a symbol, such as u(t) or u*(t),

is used for an admissible control, the correspbnding solution of Equation (14),
with X(to) = x,, will have the same type of symbol, i.e., Xt) or x*(t) respectively.
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It is useful to augment the system, i.e., Equation (14), by first setting
xo (t) = 0, x° (1) =1

and then letting

g(t) =rx01
1
X
n
L x
where
1
x =[x
{n
x

Thus, for each admissible control, u(t), the value of the zero-th component

of g(tu) gives the cost of control. £ (t) satisfies the differential equation

R 1
E() = o (E,ut) = | f (x,u,t)

2 (x,u,t)

where

fx,u,t) = | £! (x,u,t)

£ (x,u,t)

2k

(15)

(16)

(17)



The same notational convhen'tions will apply to §(t) as to x(t); i.e., G(t) or u*(t),
etc., will correspond to §(t) or E*(t), etc., respectively. The constraints set,
G, will be replaced by T= R!® G.

Given a point, £ € 3T (boundary of T), let n (§) denote a unit vector pointing
into Ext (T ) such that:

(i) If T has a unique exterior normal at §, then n(g) is that normal;

(ii) If T does not possess a unique exterior normal at €, then n(g) is
normal to some supporting hyperplane to T at §, which exists,

since I is convex.

Given an admissible control, ult) € U, it will be assumed that the interval
to’ tu can be broken up into a finite set of closed subintervals, Ik =
[tk—l’ tk] , k=1,2, ...,r, where r is necessarily odd, such that to Stl <

tzs... Str = tuand:

(i) If k is odd, the E (t) corresponding to u(t) lies entirely in Int(T') for

t e Int([tk_l,tk]);

(ii) If k is even, E(t) lies on OT" fort € [tk-l’tk]'

Note that if k is even, one may have t

is odd. The times, t

k-1 ° tk; but, this does not happen if k
K’ k # 0, r, are called junction times for the solution,
£ (t), and the points, £ (tk), are called junction points.

Let us suppose the matrix, A(t), in Equation (14) has entries aij(t)’ i,j=1,
2,...,n, and B(t) has entries bij(t)’ i=1,2,...,n, j=1,2,...,m. The
matrices, A*(t) and B*(t), have entries a’;j(t), i, 0,1...,n, and b’i*j(t), i= 0,

l1...,n, j=0,1...,m, respectively, which are defined as follows:

* oo _J 0ifi=0orj= o0,
aij(t) —{ aij(t) otherwise;

0ifi= 0,

biiV =1 b .(t) otherwise.
ij
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Consequently, Equation (17) may be written as

ya .
[]

A*(t)E + B*(thu + e, (18)

o~
//

Let Y(t) be a covariant (n+1}dimensional vector function which is a non-trivial

solution of the so-called " adjoint system"

°

Y o= - AR(t). (19)
If, for all such Y/(t), the equation

Y(t)B*(thu(t) = max { Y(t)B*(t)u }
ueqn

has a unique solution, u(t) € Q, for almost all t in the domain of Y(t), the
systems, represented by Equations (14) and (18), will be called normal

systems.,

3.4 A SUFFICIENT CONDITION FOR TIME-OPTIMAL
BOUNDED PHASE-COORDINATE CONTROL

Theorem 1.

Let U(t) be a member of U defined on [to, tu] . Let Y(t) be a covariant vector
function defined and continuous on [to’ 'cfl ], with the possible exception of the

t Let v

points tl,tz,..., r-1° 1 V2""’VI‘—1

be non-negative real numbers,
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Let £ (t) be a non-negative measurable function defined on [to’ tﬁ ] Assume that

(i) "l,l/(t&)

(ii) yl/o(t) is a constant, \l/o <0,
where Y(t) = [\l/o(t), ll/l(t), cea ,t,l/n(t)]; (The form of A*(t)

guarantees that xpo(t) is constant.)
(iii) If k is odd, then for almost all t € (tk_l,tk),

Vo= -pAR@);

(iv) If k is even, then for almost all t e(tk_l,tk),
Vo= -waxn + cwn(g w)

(v) Fork=1,2,...,r-1,

Wit + 0 - ¥y, -0 = v n[Ee] .

Let H(u,t) be defined for u € Qand each t in [to’ tﬁ]: except possibly for t
t2, .o.,tr_1 by

H(u,t) = Y(t)B*(t)u.

Suppose that for almost all t in [to’ tﬁ]’

H [a(t),t] = max H(u,t).
uen

Assume that for almost all te [to, tﬁ] , there exists a u+(t) € () such that

At) x; +B() uw @) = o0
and u+(t) is measurable on [to’ tﬁ] .

Then, G(t) is an optimal controller for the problem, P.
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Proof ;

Suppose for the sake of contradiction there exists another controller,
u* (t) € U, such that t,

< tﬁ . One may extend the definition of u*(t) by
letting u*(t) equal u (t) almost everywhere on the interval t s tﬁ] . This

choice of u*(t) maintains x*(t) at X, during this interval because of Equation
(25).

Consider the expression ll/(tﬁ) [é (tﬁ) - & (tﬁ)] -d/(to) [g(t ) - €% (t )]
Since X (to) = x""(to) = X, and % (tﬁ) = x% (tﬁ) = x
z//o(t) of Y(t) is a constant,

1’ and the component

Vit [E ) - 85 )] - i) [E k) - £xy)]

(26)

'-Po(t.& -0 - Wo(tﬁ -0 = 0.
With the possible exceptions of the times, tk’ k=1,2,...,r-1, the function
Y(t) [§ (t) - €*(t)] is absolutely continuous on [to’ tﬁ] .
Therefore,

wity) [t - sxt ] - weey [Ee) - g ] =

r-1 R

Y [veeo v - 0] [sy - gt ] + (27)

k=1

k
J s lww [ew -exm] }at- o
k= 1 t

k-1
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Taking note of Equations (20), (21) and (22), Equation (27) yields:

r-1
Y ven [Bep]E e - e ep)]
k=1
t
+ J [{-t]/(t)A*(t) ‘ g(t)n[é(t)]} [ - gxw)]
t22-1
20 {A*(t)[é(t) - g ]+ B {8 - u*(t)]” dt (28)
%’1‘ Yor 41
+ Z J [-zp(t)A*(t) [é(t) - §*(t)]
=0 ty 1

+ Yl {A*(t) [%(t) - @*(t)] + B*(t) [ﬁ(t) - u*(t)]} ] dt
-

= 0’

which reduces to

r-1
kzl v n (B ] [Bp - e ]
r-1

]

=t
Y J {c Wn[Ew][Ew® - exw] + wwBw [am- u*(t)]}
f24-1

1=1 29)
r-1
5 2141
* Z Y(t)B*(t) [ﬁ (t) - u*(t)] dt = o.
=0 “t,,



Now, the fact that T is convex, together with the non-negativeness of v
shows that for k =1, 2,...,r-1,

k 2

v n[%(t)] [E(t) - Ex (t)] z 0. (30)

The fact that T’ is convex, together with the non-negativeness of g(t), shows

thatfor tety 4 ty] . L2, 5

conlew o -erm] 2 o (31)
By hypothesis on u(t),

Y [am - wm] =0, t e [t o] (32)

Therefore, in order that (29) should hold, it is necessary that expressions (30),
(31), and (32) should be identically zero wherever defined. Let [t+, ta]
denote the intersection of I = [t ,t ] with [t s t~] . The interval,

r r-1’r u*’ ‘u

+ . . .
[t s ta] , is easily seen to have non-zero length. On this interval,

Y(OB*(t) [ﬁ(t) - u*(t)] = 0 (33)
or

YOB*(t) wi(t) = Y(t)B*() u(t) = max H(u,t) (34)
ue

almost everywhere.

But, then, the normality of the system implies that, almost everywhere on

[t+, t~] ,
u

ﬁ(t) = uk(t). (35)
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3.6

But then, since ): (ta) =X, and Equation (25) is true, it must be true that
x (t) = x (36)

and this contradicts the definition of t~, since tt < ta .

Thus, u(t) must, indeed, be an optimal controller for the problem, P. This

completes the proof of Theorem 1.

It will be shown next that, under certain assumptions which amount to a modified
normality conditions, a time-optimal boundfd phase trajectory, ;{ (t) joining X
to Xy and its associated control function, u(t), are unique, provided they also
satisfy the hypotheses of Theorem 1. Some of the results are for time varying

systems and some for autonomous systems.

FURTHER ASSUMP TIONS AND NOTATION

1t will be assumed now that an interval, [tk-l’tk] , (k necessarily even), during
which x(t) lies on the boundary of G, is the union of finitely many subintervals
which may be divided into two classes: subintervals during which ¢(t) > 0, and
subintervals during which §(t) = 0. On a subinterval during which {(t) = 0,
Equation (21) and Equation (20) are identical, so the covariant vector, y(t), will
obey Equation (20) - the same equation that {(t) satisfies on intervals of time
during which x(t) lies in the interior of G.

The 1ntervills, Ik = [tk-l’ tk] , were defined for a given interval, '.to’ ta] s
and path, x(t). It will now be assumed that there is a refinement of this
subdivision such that [to’ tﬁj is thereby divided into subintervals, J, = [Tk-l’ Tk] s

k =1,2,...,s, where s is necessarily odd, such that:
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3.

6

i) Ifte (Tk—l’ 'rk) and k is odd, then y/(t) obeys Equation
(20);

(ii) If te (Tk_l,'rk) and k is even, then Y(t) obeys Equation
(21) and ¢ (t) > 0.

" (k' odd),
while each interval, Jk’ (k even), is a subinterval of some Ik/, (k/ ’even).

It should be noted that each interval, Ik, (k odd), is an interval, J

UNIQUENESS OF TIME-OPTIMAL BOUNDED PHASE-COORDINATE
CONTROL FOR STRICTLY CONVEX CONSTRAINT SETS

Theorem 2.

Let the control, a(t) ¢ U, the augmented path variable, E(t), and the covariant
vector, Y(t), satisfy all of the hypotheses of Theorem 1. Let it be assumed in
addition that the constraint set, G, is strictly convex and that the rank of the

n by m matrix, B(t), is almost everywhere equal to m. Then, a(t) and ;((t)
are the unique time-optimal bounded phase-coordinate control-and-path joining

X, to X with x(to) = X

Proof:

Let u*(t) and x*(t) be any bounded phase-coordinate control and corresponding

path such that x*(to) = x, x*(ta) = x, . From Equation (2) in theproof of

o 1
Theorem 1, and from the assumptions introduced above, it is seen that
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51 T
N 2 2¢
Z Yk W[E (tk)] [E () - E*(tk)] + f
k=1 o TZL—l

Leom[Eo) Bo - o]+ vopo (G0 - wo) o

s-1

2441 .
+ i f VOBHH | a) - wi()] dt = 0. (37)
=0

Tat

As in the proof of Theorem 1, (30), (31), and (32) may be derived, with (31)

. _ 5-1 .
holding for te [TZL-l’ TZL]’ L =1,2,... 5 Also, as in the proof of
Theorem 1, the equality sign must hold for (30), (31), and (32), with the new
domain for (31). From the normality hypothesis, the equation, Yy ()B*(t)u(t) =

max { Y (t)B*=(t)u }, has a(t) as its unique solution almost everywhere on an
uel

interval, Tk), {(k odd), ux(t) = a(t) almost everywhere on such intervals.

(T _+4»

k-1
It should be clear then that the theorem will have been proved when the follow-
ing result has been obtained: if k is even, and x*('rk_l) = x('rk_l) , then

x*(t) = ;((t) and ux(t) = a(t) almost everywhere for t in the interval [Tk-l’ Tk] )

To prove this, note that at any time instant, t e(Tk-l’ 'rk), 71[5 (t)] is the

(n + 1)-dimensional exterior normal (or normal to a support plane) to T at £ (t).

-~

Let M [x (t)] denote the n-dimensional exterior normal (or normal to a support
plane) to G at the corresponding point, x(t). Then, since the zero-th com-

ponent of M [E (t)} is zero,

com(zw) (2w - =] = con[xo] [xo - xo)]. (38)
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3.

7

If Equation (37) is to be true, then

C(‘t)n[x(t)] [x(t) - x*(t)] =0, te [ -1’ Tk] . (39)
for K even. The strict convexity of G then implies x*(t) = ;((t),
te [Tk_l, Tk] . Since both x*(t) and x (t) satisfy Equation (14), it must be true
that

B(t)ux(t) = B(t)u(t) (40)

for almost all t ¢ [Tk—l’ Tk] .

equal to m, u*(t) = u(t) almost everywhere in [Tk—l’ Tk]' Thus the proof of

Then, since the rank of B(t) isalmost everywhere
Theorem 2 is complete.

In the above theorem it would clearly be adequate to assume that {(t)> 0 almost

everywhere in [ when k is even.

"1 i)
This result has rather restricted application because, unless for some reason it
is spherical or elliptical, the constraint set is usually a region bounded by hy-
perplanes and hence will not be strictly convex. Thus, another result is needed
which will give uniqueness in such cases. A general result for measurable A(t)
and B(t) and (not strictly) convex constraint sets appears very difficult at pre-
sent. The results presented below will be valid for a more restricted class of

problems.

MORE ASSUMPTIONS AND NOTATION

It will henceforth be assumed that A(t) is a bounded measurable matrix function
of t, while B(t) = B is a constant matrix of rank, m. The constraint set, G,
will be a closed convex set bounded by finitely many (n-1)-dimensional hyper-

planes, Hl’ H,, ... ,Hp. In other words, letting Vies k=1, 2,...,p, bea

unit vector perpendicular to H, , there are real numbers, Ch k =1,2,...,p,

such that

k)
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3.8

G={x|x-vk$ck,k=1, 2, ....p }. (41)

Thus, for points, x € 9 G, which lie in the interior of an (n-1)-dimensional
face of G, which is part of the hyperplane, Hk’ nx) = Vl:. Finally, it will
be assumed that the control restraint set, Q, is a polyhedron in E™ with

non-empty interior. Here the prime denotes the transpose.

UNIQUENESS OF TIME-OPTIMAL BOUNDED PHASE-COORDINATE
CONTROL FOR CONSTRAINT SETS WHICH ARE POLYHEDRA

it is evident from the proof of Theorem 2 that it will be sufficient to consider
the following problem: Assume that [Tk—l’ T
which x(t) lies on the boundary of G, and that {{t})> 0 for te

Show that if x*(T

] , (k even), is an interval during

2 (T-17 )
k-l) = x('rk_l), then x*(t) = x(t) and wk(t) = u(t) almost

everywhere on [Tk-l’ Tk] .

Eguation (39) is still valid but, since G is not siricily convex, it cannot imme-
diately be concluded that x*(t) = x(t) for t e[‘rk_l, Tk] .
fixed time, te [Tk-l’ Tk]‘ Then, x(t) €2G. If xX(t) lies in the interior of an

Let us consider some

(n-1)-dimensional face of G, which is part of some hyperplane, Hk’ then cer-

: 2 _
tainly, T][x (t)] = vk. K’
consequently, on the same face of G. Now suppose, instead, that x(t) lies

NH N ...NH .
1 k2 kr

where e are non-
@, aqy, @,

Equation (39) then implies that x*(t) also lies in H, , and,

in an (n-r)-dimensional face of G, which is part of Hk

Then, T][x(t)]= arlvk1 + arzvk2 +... +

negative real numbers. Let us suppose the ordering is such that @y,ag,--.@

a_ V, ,
r
. kr

SJ
S = r, are the non-zero coefficients. Then it is easy to see that Equation (39)
implies x*(t) e Hk N Hk n...o Hk . Since both x (t) and x*(t) are con-

1 2
tinuous on [Tk-l’ Tk] , the interval, [Tk-l’ Tk] , is composed of subintervals

on each of which both X (t) and x*(t) lie in some intersection, Hk
1 2
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Instead of presenting a complete analysis of this situation, we will consider a
simplified situation in which [’r k-1’ Tk] is composed of finitely many subinter-
vals in each of which only one of the coefficients , a; , is non-zero and, hence,
x (t) and x*(t) both belong to some hyperplane H . But then, it is clearly
sufficient to consider the case where x(t) and x (t]) both lie in a fixed hyper-
plane, Hy, on[ ko1’ k]’ and 7 [x(t) = v{ on [Tk-l’ k] . Weremark that
the results in the general case referred to above are not essentially different

from those we present here.

Using, if necessary, a non-singular change of coordinates, it may be assumed

that v, 1is given by

1
1
vy S0 |= e (42)
0
and Cl = 1. Thus, forall te [Tk-l’Tk] s
Tl[x(t)] ‘= e (43)
where the prime denotes the transpose.
(This choice of 7N [;: (t)] will be made even if ;((t) lies on a face of G of
dimension less than n-1.)
Conditions must be found under which the equation,
Y (t)B*(t) [u t) - u*(t)] =0, (44)
already known to be valid almost everywhere in [ k-1’ k] implies that
uwk(t) = u(t) almost everywhere there, and hence x*(t) = x (t) there.
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Let x be a point of G lying in H1 and let x(t) be, for some uf(t), a
solution of Equation (14) passing through x = x(T) at time, T, such that

x(t) lies in H1 on an interval, [T, T+ 6]. Then, it must be true that

=[x el] | o =0. (45)

If x{t) exists, then

But then,

m
k k -
aqy (Mx (1) + kg b u (1) =
=1
o (1) © x(T) + '81 ©ult) = 0. (47)

For a given x(T), fherefore, the set of admissible values of u(T) consists of
the set

0 x('r),'r] = { u |l ue Qand Bl - ou = —al('r) - x(T) } (48)
which is the intersection with  of an (n-1)-dimensional hyperplane perpendicular

to the fixed vector, Bl' Thus, Q [x('r), T] is a convex set of dimension <m-1

which, in general, varies with x(T) and T.

Definition 1.
Q(x, 1) ={u <-:Q|;B1 -y o= —al(T)' x}; QC ={u € QlBl - u=c, creal }

Obviously, each Q(x,T) corresponds to one and only one Qc, but a fixed

Qc may correspond to none, one, or more than one (x, T).
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The following statement is easy to prove: There exist a set, W, of vectors of
unit norm containing but finitely many members such that for all QC the one-

dimensional faces of Qc are parallel to members w of W.

Definition 2 (The Modified Normality Condition),

There are no subsets of [Tk-l’ Tk] with positive measure during which Y/(t)B*

is perpendicular to any w eW,

Assuming that the modified normality condition holds, the uniqueness of x(t) and
4 (t) can be shown; i.e., it can be shown that u*(t) = @ (t) almost everywhere on

(v %] -

From Equation (44) and the hypotheses of Theorem 1, it is known that both
u*(t) and G (t) maximize Y(t)B* u almost everywhere on [Tk-l’ Tk] for u e Q.
Therefore, if u*(t) #G(t), the convexity of Qimplies that the line segment
from u*(t) to {i(t) almost always lies on the boundary of (?, and the vector,
Y(t)B*, is perpendicular to this line segment. Now, the line segment from
u*(t) to G1is either part of a one-dimensional face of ) or else is such that
its interior lies in the interior of a face of (1 of dimension higher than one.
In the latter case, Y(t)B* must be perpendicular to this entire higher dimen-
sional face, for otherwise, Y(t)B* G would not be maximal. But this higher
dimensional face of () contains a one-dimensional face of some QC, and thus,

Y (t)B* is perpendicular to some w ¢ W.

Therefore, the modified normality condition makes it necessary that the line
segment from u*(t) to {i(t) lie in a one-dimensional face of {1 at almost all
Tk-1° Tk] can be sub-
divided into finitely many subintervals during which this line segment lies

points of [Tk—l’ Tk]' It will be assumed here that [

in a fixed one-dimensional face of (), But then, for the proof, it may as
well be assumed that this line segment lies in a fixed one-dimensional face

of 0 onall of [T, _,, Tk],
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This one-dimensional face of  cannot be perpendicular to the vector,Bl,
for this would imply that it is a one-dimensional face of some Qc and hence
parallel to some w ¢ W, and then one would have Y(t)B* w =0 on ['r k-1’ Tk] .
But, Bl' = el'B = n [i (t)] B, and hence,

Infz®] Blaw -ww)] | =M ko -uwo || (49)

fort e [ Tk], where Mo is a fixed positive number.

Tk-1’
Now, for t ¢ [Tk_l, Tk]’
n[x ® ] [xxe - &) = 0

so that almost everywhere, by differentiation,
[z ][ 0 - 2w) = o
or, using Equation (14),
n[x®] [ A®X*@ + B ux) - At) &) - Bd ] = o ie.,
n[x®] a®[xxm - 2] = n[z0]Buww - a ]
which, using (49), implies
Infze ] A [xx0 - 2] | 2m 118w - we || (50)
for almost allt € [Tk-l' T ] .
Now, since the matrix, A(t), is bounded,
In[#0) ] A [xx) - 2] | <M [0 - 20 11,

where M1 is a fixed positive number. Thus,
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[y - 50 1] 2™ | Jux) - ae) |1, (51)
where M is a positive number. Assume that

Flus(t) - Q@) || <N - (52)

q
k-l)

on the interval, [Tk-l’ T , where N is a positive real number and q is a non-

K
negative integer. Since ||u*(t) - § (t) |!is bounded ( Q is compact), this

inequality certainly holds for some N when q= 0. Using the variation of param-

eters formula, and the fact that x* (7, )= &(7__,),
t t s
x*(t) - x(t) = exp J A(s)ds J exp -j A(s)ds B[u*(S)-ﬁ(S)]dS
Tk-1 Tk-1 Tk-1
t (53)
< KJ [lux(s) - G (s) ||ds.
Tk-1
But then, from (52), it is seen that
k) - %00 || t q G-t
X"(t) - X(t) ' <K NJ (S - 'Tk_l) ds = K N————G-Ti—— .
Tk-1
Then, (51) proves that
| KN (-7 %!
E3 -
uk(t) ﬁ(t)Hs i R
Since this analysis is true for q = 1, mathematical induction shows that
q q
K (t-r )
A k-1
() - Gt _— - K-
| ux(t) u()lls[M} N 3y (54)

for any positive integer, q, for eacht ¢ [Tk 1 Tk ]
the right hand side of (54) is the gq-th term in the Taylor series for

But, the expression on




N exp ['II\% (t - Tk—l)] and hence approaches zero as q - =, Thus, the only

possible conclusion is that
ux(t) = uaf(t)

for almost allt € ['r Therefore, the following theorem is proved.

k-1’ Tk] .

Theorem 3.

Let it be required in the statement of the optimization problem that A(t) be
bounded and measurable and B(t) = B is constant. Let u(t) be an optimal
control for the problem, P, and x (t) the corresponding trajectory and assume
that G(t) and g(t) satisfy the hypotheses of Theorem 1. Let the control res-
traint set, (?, be a convex polyhedron in E™ and let the constraint set, G,

be given by
G ={x lx -vksck, - k=1, 2,...,p}.

Let Wk denote the finite set of unit vectors parallel to one-dimensional

faces of sets
- ’ —
Qk(c) —{ u lkau— c }

Suppose that there is no interval during which x (t) - Ve = S and Y(t)B* W= 0
for some member Wy of Wk' Then, u(t) and % (t) are the unique solution of
the bounded phase-coordinate optimization problem with initial point, X

initial time, to’ and final point, Xy.
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3.9 THE MODIFIED NORMALITY CONDITION FOR AUTONOMOUS SYSTEMS

It will now be shown that if both A(t) = A and B(t) = B are constant matrices,
then the test for the validity of the modified normality condition is essentially
the same as the test for the validity of the normality condition for the problem

of time-optimal control without phase constraints.
It will be shown later that, in this case, the function, ((t), is piecewise
analytic. Now, suppose there is an interval, (TO, T 1), during which x(t)
lies on the (n-1)-dimensional hyperplane, x - e, = 1, and during which g (t)
is analytic and for some w € W, Y(t)B* w = 0, i.e., in the inner product
notation
[zl/(t) ' B w] =0, (55)

where the prime denotes the transpose.
Differentiating yields

{vor+confw] Jrrw =0 (56)
But, as already known from the definition of W,

n [é (t)] B* w = 0 (57)

whence

[-zp(t)A*] Bfw = 0 = yY(t) A*Bx w =0, (58)
Continuing, it is seen that

v [a*]¥Brw =0, k= 0, 1, 2,..., n-1, (59)
whence, letting :}/(t) denote the last n components of Y¥(t),

Y AKBw =0, k=0, 1, 2, ..., n-1. (60)
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Then, if Bw, ABwW, ..., A" ! Bw are linearly independent, and gt 4o,
a contradiction is obtained. This should be compared with the corresponding

test in Chapter III of Reference 4.

We will conclude this chapter with an example and some remarks regarding
practical application of these results. All notational conventions so far
introduced will continue to be used with the exception that the covariant

vector, Y(t), will be an n-dimensional solution of

Ylt) = -Y(DA()

or

Y(t) = -P(A[) + () n [x (t)]

rather than a solution of the augmented equation used earlier.

3.10 EXAMPLE: THE LINEAR HARMONIC OSCILLATOR (LHO)

To illustrate the use of Theorem 1, consider the controlled LHO,

X +x = u,

where the variables, x and u, are scalars, with u subject to the control

restraint

| u | <1
and with the phase constraint

dx S1

dat 2.
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X (t)
Letting x(t) = 1 now be a two-dimensional vector, the second-order
X (t)
2

system equivalent to LHO is

x1 0 1 x1 0
= + u, (63)
X, -1 0 Xg 1
which obviously has the form X = Ax + Bu. The phase constraint (62) then
becomes
1
lxy | <5 . (64)

The adjoint system is
. 0 1 .
V., ¥ = -, ¥) ,ory = - YA, (65)
1 ¥2 Y2l

1

when |x2(t) | <=

Time-optimal solutions of Equation (63) will be constructed in that portion of
G ={ (x,%,) | lx2 | < % }(See Figure 1) which lies in the left half plane by
a ""backing out'" procedure.

The general solution of Equation (65) is a vector Y(t) of the form

Ylt) = (Clcos t+Cysint, -C sint+ C,cos t). (66)

Thus, for the unconstrained time-optimal control problem, the Maximum

Principle shows that

u(t) = sign (-Clsin t + Czcos t). (67)
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X, =3
A 2 2
— > X
0 1
h 3
F X3=73
¢ (1) = 2 ALONG LINE ABC

JUMPS IN ¥ () TAKE PLACEAT C

Figure 1. Optimal Solutions of the Linear Harmonic
Oscillator with Bounded Phase-Coordinates
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Let it be agreed that in every case the origin is reached at time t = 0 and thus

the optimal trajectories are to be studied for t < 0.

From the study of the unconstrained problem, it is known that there is an opti-
mal trajectory, x(t), with a(t) =-1 on the interval, [- —g—, 0 ] In Figure 1,
this is the arc AO. It is clear, then, that for te ( '%’ 0) ,

Y, = -Cysint+C,cost<0 (68)

because (66) and (67) describe the relationship between Y/(t) and 1 (t).

Att= - -g—, x(t) encounters the phase boundary, Xg = -;— If, on an interwval,
[-—g— -6, - %], x (t) is to lie on this boundary, one must have

§2 t) = o,
whence

u(t) = fcl(t), (69)

and thus, the value of {i(t) is not in general extremal within = [-1, 1 ] .

But, the equation

Y(t) Bi(t) = max Y(t)Bu (70)
ueq

must hold on this interval if the hypotheses of Theorem 1 are to be satisfied.

Hence, l,bz(t) =0 on this interwval.

To avoid a discontinuity in Y(t) att = - %T- , set

+
"

¥, ( --g—) = -C, sin( - %) + Cycos ( -%) = 3 ) 0 (71)
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so that C1 = -V 3 Cz. With Equation (68) in mind, the choices

2 -1, ¢y = Vs

C

are made, thus determining

y(t) = ('\/3_cos t -sin t, -’\/3_sin-t -cos t)
on the interval, [- % 0] .

If % (t) lies on the boundary, Xg = % on an interval, [- % -6, ——g—], then

tl/z(t) = 0 on this interval. But, on this interval,
(9,0, Fy0] = - [0, wy0] {—(1) (1)]+ ¢ [o 1]
since n[i (t)] = [0 1] . Therefore, zixz(t) = 0, which implies

C =y,
But, since :i/l(t) = tpz(t) =0, this means

o =y (F BVE oL e

The use of the function, ((t), may be discontinued at any time t < - -g- .
If ¢(t) is not used at all, the optimal trajectory, FAO, results. If C(t) is
used on an interval, [— -E—' -5, - g—] , and discontinued prior to - %- 5,

then, for t < - g - 0, one has

Y(t) = [2cos (t+1(;T + 08), -2sin (t+g+ 6)]

and a trajectory, GBAO, is the result. This analysis holds when 0 is a

positive number <V3. I1f& >V3, it does not apply because then k(t) would

lie on Xg = % to the left of the point,

1
keep % (t) on x2=%in this region. 2

b7

(72)

(73)

(74)

—~
-3
n
—a

{76)

(77)

, and there is no control which can



Assuming now that ¢(t) = 2 has been used on the interval, [— %_'\/3, - %],

the situation att = - g’- VB_ will now_be examined. It is clear that, under
the circumstances, X (- g -‘\/.3.‘ = [zj_ . If Y(t) remains continuous at
t= ——611 -'\ﬁ;, then for t < - -g—\/i’_» 2one has Y(t) = [ZCos (t +%+'\/§),

-2sin (t +—g— +'\/§)] and a trajectory, HCAO, is the result. Suppose, on the

other hand, a jump discontinuity of the form

W0 -y-0 = valkm] = o v] (78)
is introduced at att = - % -‘\/-3_. Then
Y -F-V3 -0 = [2 -v). (79)

The real number, v, may be any positive number. Depending on the choice
made, and this choice is entirely arbitrary, a number of trajectory types
arise, With v= 0, the trajectory, HCAO, has already been mentioned. For
v >0, the trajectory takes the form indicated by IDCAO. The limiting case,
v = + =, which actually corresponds to taking ¥ ( - % -'\/g -0)= [0 1 ] ,
leads to the trajectory, JECAO.

The trajectories described above and those obtained from the control given
by Equation (67), with C1 = cosf and C2 = sin@®, where - %< 60 < 0,

together with their symmetric counterparts, completely fill out the domain
of controllability for this particular time-optimal bounded phase-coordinate

control problem.

3.11 COMPUTATION OF TIME-OPTIMAL BOUNDED
PHASE-TRAJECTORIES AND CONTROLS

In this section it will be shown that the method illustrated in the above example
has rather general application. It will be shown that @0mputation of optimal
trajectories via the so-called "backing out" procedure is feasible in the sense

that no difficult mathematical problems will normally arise in such computation.
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The ""backing out" method for problems without phase constraints involves
the following operations for each trajectory: First, a value, tl/o, for W(tﬁ),
the final value of Y(t), is selected. If the control process is linear, this
leads immediately to the entire solution, Y(t), defined on any interval,

[to, tﬁ], so that u(t) is chosen to maximize Y(t)B(t)u; finally, % (t) is cal-
culated as a solution of

$(t) = AMEEM) + BOI®)

with i(tﬁ) = x For nonlinear problems, the basic idea is the same but

1
Y¥(t) and x (t), in general, have to be calculated simultaneously.

The corresponding process for time-optimal bounded phase-coordinate con-

trol of linear systems of the form
x = A(tx + Bu

| Alt) time varying, B ccnstant] will be considered below. Tt is clear that
the calculation of an optimal bounded phase-trajectory involves treatment of

the following subsidiary problems:
(i) Determination of x (t) and 1 (t) when % (1) lies in the interior of the
constraint set, G;

(ii) Analysis of the behavior of Y¥(t), x(t), and u(t) at times when %(t)
leaves 3G to enter Int(G);

(iii) Analysis of the behavior of Y(t). x(t), and (t) during intervals
for which x(t) lies on 3 G;

(iv) Analysis of the behavior of Y¥(t), x(t), and u(t) at times when x(t)
leaves Int(G) to meet 3G.

Each of these subsidiary problems will now be discussed.
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Let (T,, T7,) be a maximal interval such that x (t) lies in Int(G). If

Theorem 1 is to be used, it is clear that the usual Maximum Principle

must be employed on such intervals. Thus, the principle question that

arises is how Y/( 'rl) is to be determined. For the unconstrained optimi-
zation problem, Tty the choice of tl/(tﬁ) is arbitrary, with each

choice leading, in general, to a different optimal trajectory. The example
above shows that this is no longer true in the present theory of bounded

phase control. Every solution is such that zpz (t) <0 on the interval, t- IST—, 0’ s
leads to the trajectory, AO, and the only extension backward in time occurs

when, in addition, ¥, (-2-]= 0.

Let it be assumed that both ( and G are convex polyhedrons, the former

being compact. Assume that o is a time when X (t) leaves the boundary,

x.e = 1 (without loss of generality), of G for Int(G). Assuming 1 (t)
to be left continuous at time t = TO’ it must be true that
YT, - 0B To = max Y(7 - 0)Bu (81)

ue

and it also must be true that
G(rg e [%(rp, o] = { ue® I8, < = -ay(rp- 2 (1) } (82)

[See Definition 1 following Equation (48)] . In general, it is to be expected
that i(t) will lie in the interior of a one-dimensional face of () on some
interval, [TO -0, To], as was the case in the above example. Letting F
be this one-dimensional face of (1, it is seen that #/('ro - 0)B must be
perpendicular to F. Now, l,l/(TO = 0)-&1/('r0-0)e1 ] e1'= w('ro+0)-[ll/('ro+0)e1] el'
Theorem 1 allows the possibilities, W(TO +0) = vel’ , where v 2 0. Thus,
the condition which must be imposed upon t,l/('ro + 0) in order that the tra-
jectory be continuable for time t < TO is, in general, that there be a one-
dimensional face, F, of (), whose interior intersects Q[R ('ro), TO] in one

point only and a real number, y 2 0, such that with

W(tg +0) - ¥(1y - 0 = vel , (83)

\U(TO - 0)B is perpendicular to F,




In most cases, thisis the rule which will enable one to determine tl/('ro + 0).
There are exceptional cases but these are not likely to arise very often in
practice..

Now, attention will be turned to an interval, [TO’ ‘TF] , during which
X (t) € 3G. During such an interval, Y(t) satisfies

V) = - YmAWR) + ) n[i (t)] ) (84)

It will be assumed that [TO’ TF] has a partition

r
[To' TF] = l J [Tk—l’ Tk] (85)
=1
and that for te ['r -1 Tk], Y(t) is perpendicular to a one-dimensional face of
il, namely, Fk' Without loss of generality, it will again be assumed that the
portion of 3G on which X (t) lies during the interval, Tor Tl] , is given by

x.e, = 1. Letting z, be a unit vector parallel to Fk' it is seen that on each
[Tk-l’ Tk]

d/(t)sz = 0. (86)

Differentiation of both sides of this identity yields

[-wwaw + ¢t e/] Bz =0, (87)
whence
Y(t)A(t) Bz,
¢ty = - . (88)
e1 sz
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Thus, ((t) is determined explicitly. If A(t) is analytic in t, then Y(1) is
piecewise analytic because
4
. Y(HA(t) Bz e

Y = -Y)A) + (89)
e'lek

and hence, as claimed just prior to Equation (55), ((t) is piecewise analytic.

If the use of ((t) is discontinued arbitrarily at some time during such an
interval, the fact that ¢(t) > 0 will, in general, guarantee that the trajectory
will re-enter the interior of G. (Compare with the example given above). In
running of optimal trajectories in a "backing out'" process, the use of ¢(t)
must be discontinued at a reasonably large number of points so as to obtain

these trajectories.

The next question to arise is that of determining the Tk’ i.e., when does ((t)
cease trying to keep Y(t)B perpendicular to a given one-dimensional face of
and start keeping Y(t)B perpendicular to another ? This situation will usually
be easy to detect; at such a time, Tyer Y/(t)B will be perpendicular to a face of
{1 of dimension higher than one, of which the two one-dimensional faces already

mentioned are bounding faces.

Finally, let it be assumed that o is a time when an optimal trajectory
leaves Int(G) to meet 3G. A large number of these cases have already been
treated above when the discontinuance of the use of ((t) was discussed. The
only additional remark necessary is that, if a number of discontinuities in
¥ (t) of the form

Wrp +0) - Ylyy - 0) = yn[x(r)],

where v > 0, are possible (i.e., the resulting trajectories remain within G),
then a representative number of these discontinuities should be made in order
to obtain the desired trajectories. (Again note the situation att = - % --\/—3-

in the example.)
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3.12 CONCLUSION

In this chapter it has been shown that if a control, @ (t), and associated
path, % (t), obey a certain maximum principle, stated earlier by Chang
[9, 10] , then they represent a solution to the time-optimal control
problem. Also, conditions under which such an optimal solution is

unique have been obtained. Finally, it has been shown that this theory can

be used in a "backing out" procedure to obtain optimal trajectories.

53



CHAPTER 4

AN APPROXIMATION TO LINEAR BOUNDED
PHASE-COORDINATE CONTROL PROBLEMS

4,1 INTRODUCTION

In many control problems both restraints on the magnitudes of the control
variables and various system variables may occur. Certain results [4, 5, 9]
are available for the determination of optimal controllers for some classes
of linear and nonlinear systems involving such restraints, These results
take the form of necessary or sufficient conditions for optimal control but
not both, and are therefore only a partial solution to even the theoretical
problem, leaving much to be desired in the way of a practical solution, To
use the necessary or sufficient conditions for synthesizing an optimal controller
it is necessary to solve a two-point boundary value problem in terms of a
number of free parameters and multipliers, where the number of parameters
is not even known, as well as certain jump conditions [4, 5] . A "backing
out" procedure, given in Chapter 3, is also available if one is interested in
floeding the domain of controllability with responses and then keeping track
(storing) of the corresponding control magnitude for each such point,

In this chapter, we offer a procedure which has several advantages over the
above schemes, but is only an approximate solution, Its main advantage is
that no discontinuities will be encountered in the adjoint solution which
determines the optimum controller, and therefore the resulting two-point
boundary value problem may be more readily solved, The results provide
both necessary and sufficient conditions, as well as existence, for the ap-

proximate problem.
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The analysis is limited to linear control processes as described by the dif-

ferential system
£) x = A () x+B (ult),

The coefficient matrices, A(t) and B(t), are composed of known continuous
functions on the time intgrval, to, tl] . The controller, u(t), is to be

chosen from a set, luJ |<1;j=1,2,...m, so as to steer the response,
xu(t), of £) from an initial point, X at time, t o’ to a prescribed compact
target set, G CRn, and it is required that x _(t) remain within a given constraint
set, A, during its entire response, Here R is the n-dimensional real

number space,

The problem of time-optimal control, as considered in Section 4. 2, is to find
a controller, ult), which steers xu(t) from Xq to GCA in minimum time, that
is, which minimizes C(u) = t, - t_, with x(t,)€T and x (t) €A t_<tst,.

Later, in Section 4,4, other optimum control cost functionals are discussed.

Certain difficulties are involved when one directly solves for this optimum
controller, We shall therefore be content with solving the following apparently
simpler problem: Find that controller u(t) with graph in Q which steers X, (t)

from X, at to to & at tl

. _ - o [\ .
with x{’l (tl) <f and t; - t, a minimum, x5 {t) is defined

below,

It is assumed atat A is a closed convex set (for convenience we could even
let A ={ x|x*H x Sc}, where H is a positive semi-definite matrix and ¢ =
constant >0,) Let F(x) be a convex continuous differentiable function which
is such that

F(x)# 0 ifx¢A,
= 0 ifxeAl,
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Then definex*

t
1
° =
xu(tl) _[t F [Xu(t)] dt.

o
xl"l (tl) essentially measures the excursions of the response, xu(t), to a
controller, u(t), outside of the region, A, during the time interval,
[to’ tl] . By keeping x& (tl) small, the response, xu(t), is restricted to
stay close to or within A, The above minimum time -optimal control
problem is approximately solved by finding a controller which steers
ch(t) = [XG (t)’xu(t)J from (0, xo) to G ={ x°, x|x eﬁ, 0=<x°sP }in the mini-

mum time interval, t1 -ty if B> 0 1is sufficiently small,

In 4, 2, necessary and sufficient conditions are given for this approximation
problem using the time-optimal criterion, Section 4,3 contains an example
and 4,4 is a discussion of the approximation problem for other cost func-

tionals,

THE NECESSARY AND SUFFICIENT CONDITIONS FOR THE APPROXIMATE
LINEAR TIME-OPTIMAL PROBLEMS

We augment the system, £), by considering the equation system,

* There is, of course, some question as to whether such a function, F(x),
exists for an arbitrary convex set, A, contained in R"™. We now cite an
example which shows that there are such functions in a number of interesting
cases. Suppose A ={ xl, xz, .o .xn' |x2| <1 } Then pick

(xz - 1)2/2 if xzzl

2
F(x) = {0 if [x%]s1,

(x2+ 1)2/2 if x2 < -1,

il‘hus, if only one coordinate (or a linear combination) is restricted, the problem
is easily handled, as in the example where F(x) is continuous and has continuous
partial derivatives. Other A's can be approximately handled as in the example.
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F{x)

He
i

A(t)x + B(t) u(t)

obtained from £) by adding the equation for x° with x° (to) = 0, Here, A(t),
B(t) are bounded and continuous on [t ] and F(x) is a convex function,
with F(x) = 0 for x €A, —a—-(x) is assumed to exist and be_continuous every-

where,

The set of attamablhty, K(t )CR , 1s the collection of end pomts, X (t ),
of responses X, (t) = [xu (t), xu(t)] of £)wh1ch initiate at (0, x )at tlrne, to,
corresponding to all (Lebesgue) measurable controllers, u(t), which are such
that luj(t) <1 on [to’tll , for j=1,2,,.,m, (Such controllers are referred

to as admissible controllers. )

In the following theorems various properiies are cstablished for K (tl) and
BK(tl ), as required in synthesizing optimal controllers,

Theorem 1,

Consider the above system £) with initial point Xo’ restraint set {2, and set

of attainability K(t ). Then K(t ) is a nonempty compact subset of Rn+1 in

variables (x°, x), with convex 1ower surface (as defined below) for each t st <=,
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Proof:

K (t ) is nonempty since any measurable controller, u(t)CHQ, gives rise to an
end pomt X (t )E K(t ). K(t ) is compact because the system, £), satisfies
the hypothes1s of the ex1stence theorems of References 20 and 22,

Define a point, Xl’ to be in lower boundary (surface) of K(t ) if its first
component, x = inf, { } for all points, x, of K(t ), w1thx = X The or-
thogonal pro;ectlon of K(tl) on the plane, x° = 0, gives the compact convex
set of attainability [21] K(t ), for the time-optimal problem (in the x-space).

The lower boundary is convex if it defines a convex function on K(t ).

We now show that if ;:1 and ;42 are points of ﬁ(tl), then the point, y = Ak, +
(l-)\)icz =(y% y) 0=\ <1, is such that

y = x5 (t;)
and

ye & x2 (tl).

where G(t) = X\ ul(t) + (1-)\) uz(t) and ul(t) and u2(t) are such that ;{u (tl) =

X, and ;(u (t;) = x5. The convexity of the lower surface of ﬁ(tl)l then
2

follows because, in order for it to be nonconvex, it is necessary that there
exist two points, X 1, x2 on this lower boundary, with the property that the
point, A\ x + (1-)) X Xg, is below the set, K(t ), for some 0 <\ < 1, which
will then be impossible,

With a(t) = A ul(t) + (1-)\) uz(t), we find that

t
X5 (tl) = Q(tl)xo + Ll @(tl)Q_l(s)B(s)ﬁ(s)ds
o)
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t
LRI S L a8 H(s)B (s )y, (s)ds]

t
o

(1-) [Q X+ ‘1 8(t,)8 L
+ -N) R )xg L ty s)B(s)uz(s)dS]
O

= N xul(tl) + (1-)\) xu2 (tl)

= )\x1+(1-)\)x2=y

where ¥ (1) is the fundamental solution matrix of £ ), with Q(to) =], We also
calculate

xe () = rl F [ ()] at

u t

and X\ x{’l (tl) + {1-2) x& (ti) for comparison. Since F(x) is a convex function
1 2

of x, it follows that for 0 s\ €1,

F [xﬁ(t)] = F [x x, () + (l-x)xuz(t)] SAF [xul(t)]

1
+(1-\) F|x_ (t)
[ u.2 ]
and so
. t 1)
xS (t1)=X F[xa (t)] dt = J' F[x xul(t)+(1-x)xu2 (t)] dt
t t
[0} [o]
<\ "1 F @] at + ‘1 (1—x)F[x (t)]dt- .
J [Xul ] J 112 - Y L]
t, t, Q.E.D.
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We will now consider those controllers, u(t), on [to’ tl] which steer X (t) from
“xo at t to points ;{1 contained in the lower boundary of i{(tl) [written BK‘(tl)] .
Such controllers will be called extremal and they will play a significant part in

the selection of optimal controllers.

Let u{t) €0 on to <t < t1 be an admissible controller for the convex control

process

fc.) X° = F(x)

x = A(t) x + B(t)u(t)

with initial point, ;(o = (0, xo), at t_. If the corresponding response, ;cu(t),
has an end point, Sc(tl) €K~ (tl), then u(t) is called an extremal control and

xu(t) an extremal response on [to’ tl] .

The adjoint response, %(t) = o (t), n(t)}, corresponding to a controller,

u(t), is a row n+l vector satisfying the differential system

1
f= -nA(t) - nog—f [x,(0)]

n, = constant < 0.

where xu(t) is the response of £) corresponding to the controller, u(t).
Define u(t) on [to’ t1] to be a maicimal controller, in case there exists a
nenvanishing adjoint response, n(t), Ng S 0, so that n(t)B(t)u(t) = Max
{nwB®u}a.e. on[t,,t 1. ued

In Theorem 2, which follows, it is shown that extremal and maximal

controllers are the same,
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Theorem 2,
Consider the convex control process¥*

£) %°=F(x)
x = A(t)x + B(t)u(t)
with initial point ;(0 = (0, xo) at time toe An admissible controller, u(t)<Q,

on[t,,t] is extremal for f.)if, and only if, it is a maximal controller, that

is, if and only if there is a nonvanishing adjoint response, n(t), of

. JF!
n o= -nA(t) - Mo an [(x,(tN
no = constant < 0

so that

NB(tu (1) = Max { n()B(t)u } almost always on [t , 1.
ue

Proof:

Assume u(t)on [to, t1] is extremal and so steers x(t) from (0, xo) at to to
x(t) from (0, xo) at to to x,€ BK'(tl) at t,. Choose n(tl) = [no, 'q(tl)] to
be a nonzero vector normal to T directed into the halfspace defined by m
which does not meet ﬁ(tl). Note LN < 0, Then, let n(t), with ﬁ(tl) as above,
be the response of the adjoint equation corresponding to the controller, u(t),

* The necessary portion of this theorem follows from L.S. Pontryagin's
Maximum Principle {4]. For completeness, the simple arguments to

establish the necessary part are presented,
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The controller*, u(t) = sgn{n(t)B(t)}, defined for t € to’ tll is admissible and

n(t)B(t)a(t) = Max {n(t)B(t)u}
ueq

on [to. t,l.

Let 7, bea closed subset of measure, €> 0, contained in,9 = [to,tll, whereon

5 + M(t)B(t)u (t) < Max {n (t)B(t)u} for some & > 0,
uel

For given § > 0 consider the modified controller

ug (t) u(t) on y -T

u (t) on Tes

and calculate

5 ° "X + nx,
and
dn;t) X =A% + N%, where %, refers to a response of L)

corresponding to the modified controller, u. (t).

-1 if{}< 0
0 if {}=0
+1 if {}> 0

*sen{}
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Integration from t, to t1 yields

t

B k() - DX () = [1 Ma®+E [(x®)x,

to

+ n(t)[A (t)xe(t) + B(t)ult)] - F[xe(t)]]dt

and

3

t
N R (L) - Nt ) X (L) = f . [{-n AW + 2 [x @1} x (®)

t

ox
o

+n@ {A (x(¢) +B@u®}- Fix(t)] |dtforn, =-1. The case

when o= 0 is simpler and omitted.

2
Combining terms and using the assumed continuity for F andgE, we easily
find that

ﬁ(tl) ;‘e (tl) - ‘ﬁ(tl);((tl) 2§ €+ 0 (€) for € sufficiently small, where
0 (€) corresponds to terms of higher than first-order in €, and therefore
for € sufficiently small
At) x_(t,) -h(t,)%(t,)> 0, contradicting the construction of f(t,) as the out-
ey 7%\ g 1

ward normal to K (tl) at 3(1.

Hence, there exists no such interval, T, s0

N{t)B({t)u(t) = Max n(t) B(t)u almost everywhere on ).
uel

Conversely, assume that u(t) and corresponding response f(t) # 0 are such that
n{t)B(thu(t) = Max n(t) Bu

uel
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a.e, on 3 with n < 0. Let u (t) be any controller in ) with corresponding

response, x- (t). If we calculate

dnxa as above,
dt dt

and then integrate from t_ to t;, using the assumed convesity of F(x), we
find that

n(ty) X, () > 0 %= &) = AW

where w is any point of K(tl). Since |ﬁ(t1) | # 0, and n o < 0, the above
inequality implies that %u (tl) is contained in the lower boundary of the
compact set, K(tl), with convex lower boundary and, hence, uf(t) is

extremal,
Q.E.D.

Theorem 2 indicates that to stay at a lower boundary point we must continu-
ously steer maximally in the direction of the vector, n(t). This remark is

summarized as a corollary.

Corollary.

Let u(t) on [to, tl] be an extremal controller for £), with corresponding

response, ;(u (t), and adjoint response, 7(t), so that,

n{t) B (t)u(t) = Max n(t)B(t)u
uef

a,e, on [to,tll . Then on each subinterval, [tOT]C [to,tll , u(t) is also an

extremal controller with 3{u (1)edK (1). Moreover, ?] (7) is an exterior normal
to K (1) at % (7).
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Proof:
Replace ty by T in the proof of Theorem 2 to obtain that
A %, (1) 2A(T) X5 (1) = AT W (1)

for all w(T) in K(7). From this inequality the conclusion of the corollary

can be drawn,

We next show that the set of attainability, f{(tl), depends continuously on

the parameter, tl.
Define the distance between a point, p, and a compact set, G1 Rn, to be

dp,G,) = Min |p-g]

geGl
and define the distance between two compact sets, G,1 and G2CRn, to be
d(G2,G2) = Max{Max d(pl, Gz) , Max d (pz,Gl)} . Here

P, €Gy PyeG,

Ip'].
1

Magl:

lp| =
1

The set, f{(tz)CRm'l, varies continuously with ty if, given an € > 0, there
exists a 60, so that for !tz-tll < 5,

afk @) K] <e.

Lemma 1.

Consider the system, f), as above with attainable set, K (tl)CRn+1. Then,

K (tl) varies continuously with tl < o,
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Proof:

We need only show that each point, x(t ), of K(t ) is close to some point,
x(tz) of K(tz) and conversely, That is, we need to show that, given €> 0,
there exists a 6 > 0, so that when lt - tzl < §, there exists x(t ) e K(t )
such that [x(t ) - x(t )|< € for each x(tz) €K(t ) and conversely,

Let u; (t) be an admissible controller on [t _, t;+1] and fcl (t) the cor-

responding response, Fort, < tg <t

1 +1 calculate

1

t2 b
X3 (ty) - x3 {t)) = L F[x, (t)] at -jt F[x, (t)] at
o o]

and
ta -1
xlip) =3 () = 2y = [ Z #0) Blalu, (s) s
tO
1 -1
- Q(tz)j #(s) " [B(s)u, (s)]lds
tO
tl -1
#lE) 2l [ 2@ T B )y, (s
o}
SO

to
X3 (t,) - x (t,) =[ F(x, (©) at

ty
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and
t

2
xl(tz) - xl(tl) = Q(tz)J i’(s)-1 ul(s) ds
t

1

t

+ay) - a)) j 8(s) "} B(s) u,(s) ds

o
Since A(t) is bounded and continuous on [to’ t1 + 1], so is ¥(t), and there-

fore there exists a constant, Cl, so that

L& ™ | <
and

-1
| ety " | <Clon[to, t1+1].

Alsc, since B(s) has bounded continuous elements, bt (t), and ul(t) is
bounded and measurable, there exists the constant, C2’ so that

t

1

| J' ¢(s)"! Bls) uyls) ds | < C,.
t
(o]

Integration is a continuous operation; therefore, given an € > 0, there

exists a § > 0, so that

€

ﬁ; o+

1

t
IJ 3(s)"! B(s) u,(s) ds | < 3é
t

1

2

for [ t-t, | < & < L

67



Hence,

- a € € [
- —_— —_— + = =
|x1(t2) x, () I < 5+ Cy 3, 3, C, €
f -
for \tz ty ] < 6 < 1.
The other way we consider ul(t) = uft) on [to,t1 , where u(t) steers to
%(tl), and extend it to [t tl + 1] by letting u (t) = u(t ) fort e

1:

t tl, + 1] The above calculation is then repeated to find lx(t ) - &(tl) I
<efor |ty -t ]< b < 1 and so K(t ) varies continuously with t

1’

Theorem 3.

Consider the system, :C) as above, with initial data )Eo = (O,XO), compact
restraint set 3 and set of attainability K(tl). Let the target set,

G = [x°, x| 0<x® <8, xeC], whereB>Oisaconstantandt}isa
compact set of R", Suppose G meets the interior of K(t ), then there is
a 8 > 0 such that G meets K(t ) for | t-t) | < 6.

Proofs

Since G meets the interior of K(t ), there is a point, p € [G NInt, K(t )]

and a ball neighborhood, N(p) of radius r > 0 contained in K(t ). Consider

n+l1

the hyperplane, x° = p° - r/2, of R , and in this plane p1ck nt+1

independent points, Xl’ X xn, X n+1’ of the boundary of the ball, N(p),

all equally spaced. Let x2 (t), x (t) .. xn(t), xn_|_1 (t) be responses of
-C) with initial data, xO = (0,x ) and corresponding to controllers ul(t),
uy(t), ... +1(t) t, st st + 1, which are such that xl(tl) Xis eue
An+1(t1) = X4 P1ck 1>06> 0 so small that for |t- t) | <6, tlie points,
x, (t), lie within spheres of radius, r/10, of the pomts, x1 oo X 44 this
being possible because of the previous Lemma 1.

68




Consider the convex combination of controllers, ux(t) = 1 1(t) + )\ (t) cen
Mo Upey s >0, 22X = 1 (Note: lu)\l | < 1), and the correspondmg
responses, ;{)\(t), of L£)with initial data, (O,Xo). For each fixed t,

| t-t1 | <6, these response end points, x)\(t) sweep out a surface section, §,
which lies below the plane, x° = p°, by convexity, above or on the plane,
x° = 0, because of the positive nature of F and intersect the line segment,
{0 < x°<p° x= p} (see proof of Theorem 1). Hence, G meets K(t) for

t-t, | <6 <1,
1

We now consider the problem of existence of optimum controllers.

Theorem 4,

Consider the system, -ﬁ) as above, with compact restraint set 0 = [ 1 |
<1l,i=1,2..., m]CR , initial point (0, xo) eRr™1 at time t o’ and constant
compact target set G = [x , x10<x*<B, xe¢ GJ for 8 >0. Ifthere exists

an admissible controller, u(t) CQ, steering xO to G on to <t <t_, then there

1}
exists on optimum controller (also admissible) steering x to G in minimum

time duration t* - to.

Proof
If {0, x ) € G, thent* = t and optimum control is not required. So assume
(0, x )/G and consider the set of attainability, K(t ), fort, 2t . Since

1
there is one controller which steers (0.xo) to G, the set, K(tl), meets G

for some t1 >to. Define t* to be the greatest lower bonnd of all times,
1, such that K(t ) meets G, By the continuous dependence of K(t ) on
t,, the set of t1mes for which K(t ) meets G is a closed set in R Hence,
t* is the first time K(t ) meets G and therefore, pick as the optimum con-

troller, u*(t), t0 <t< tﬂr, a controller which steers to K(t*) 0 G.
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The next theorem asserts that for optimum control we need only consider
points of the lower boundary of the set of attainability and therefore, by

Theorem 2, extremal controllers. A sufficiency condition is also included.

‘Theorem 3.

Consider the system, .E’) as above, with compact rectangular restraint
set (0, initial pomt (0,x ) at t and compact convex target set G = [x°,x ]
0<x°<B;xe¢ G B> O] Let u* (t) be a minimal time-optimal controller
steering x*(t) from xo to G. Then,u *(t) is extremal, that is, there
exists a nonvanishing adjoint response, ﬁ(t) = [no’ q(t)] with n, 0 so

that

n(t) B(t) wi(t) = Max ['r] (t) B(t) u]
ueD

almost always on [to, t*], with n(t*) an outward normal of K (t*) at x*(t*)
on 3K(t*) and 'r](t ) satisfies the transversality condition, namely, n(t¥)
is normal to a supporting hyperplane, m, of G and the set of attainability,
I%(t*), which separates I%(t*) from G.

Moreover, if for each point [23] X €G, there exists a nonmaximal con-
troller, u(t)C 0, so that on t—o <t <=, the response, xﬁ(t), initiating at
X = Xﬁ(-t-o) is contained in G; then, when u(t) is an admissible extremal
controller steering Xy to G by means of a response satisfying the trans-

versality condition, it is an optimum controller,

Proof:

By assumption there exists a controller steering x to G, so G meets K(t*)

Suppose G meets the interior of K(t*) This is 1mposs1b1e because then G
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meets the interior of f((t) for |t-t* (<8, 6 >0,by Theorem 3, and this contra-

dicts the optimality of the controller. Hence, 3G meets 3 K(t*) so that the optimum

controller must steer to aﬁ(t*). We must show that it steers to a lower boun-
dary point to conclude that it is extremal. This follows at once because ﬁ(t)
always first makes contact with G at a lower boundary point as can be seen
by considering how the compact set I%(tl) with convex lower surface moves
with respect to the set, G. Thus, if u*(t) is optimal, it is extremal and, by

Theorem 2, there exists the nonvanishing adjoint response ;\(t) so that

n (t) B(t) ux(t) = Max n(t) B(t) u
ue

where ;\(t*) satisfies the transversality condition; since G and the lower
boundary of K(t*) are convex, they can be separated by a supporting hyper-
plane, 7, and we choose ﬁ(t*) to be normal to mand directed into the halfspace

containing G.

When u(t) is an admissible extremal controller steering ;(o to G and satisfying
the transversality condition, it must be an optimum controller if G has the
property that through each point, x €G, there passes a nonmaximal response
which remains forever in G. This follows because once G and K(t) come
together, the interior of i{(t) has a nonempty intersection with G, so that the
transversality condition can only be satisfied once and therefore there is

only one time, namely t*, for which an extremal controller can steer to G
and satisfy the transversality condition. Thus, any such extremal con-

troller satisfying the transversality condition is an optimum controller.

Q.E.D,
We have, therefore, reduced the problem of finding an optimum controller

for the approximation problem to that of finding a solution to the two-point

boundary value problem as given by the 2n+2 equations:
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4,

3

x° = F(x)

5 .
i

A(®) x + B(t) Max [q(®) BE®) ul

uen
. aFl
= -nA() - —
n nalt) -n, 5 &
n, =0 , (n, < 0)
with boundary conditions ;c(to) = >20, x(t*) €3 G, with n(t*) an interior

normal to G at ﬁ(t*).

AN EXAMPLE OF APPROXIMATE BOUNDED PHASE-COORDINATE TIME -

OPTIMAL CONTROL

We shall consider a very simple example to illustrate some of the theory
of the previous section. Consider a simple mechanism with position
coordinate, x, and velocity coordinate, y. Suppose it is desired to bring
the mechanism to rest by means of a thrust force, u(t), whose magnitude
is bidirectional but limited to be less than one in magnitude, and suppose
the velocity is not to exceed 0. 6 in magnitude. That is, consider the

linear system

x =y

u(t)

“ .
[}

with Ju(t) | <1, A = [x,y, Iyl 50.6], x(0) = 10, and y (0) = 0.
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2

Pick F(x,y) = ;-(y - ';-) fory 2 -é'

=0 for!y|s-%—

S W U
2 W g7 ory=-oy oo

We shall later determine the parameter, B >0, so that the strict bound on y
is not exceeded. Problems in which the bound is soft are more easily
handled since then we can generally pick 8 ahead of time and in a straight-
fcrward manner solve the two-point boundary value problem. Here, we have
picked F(x, y) so that we are constraining the response, even before the
boundary of A is exceeded, in hopes of maintaining the strict bound on y.

To solve this approximate problem, it is merely required that we find a
solution of the system:

x° = F(x,y)
x =y

e )

with x°(0) = 0, x(0) = 10, y(0) = O, x°(t1) <B, x(t)) =0, y(t,) = 0 for

some t1 > 0.

A simple calculation shows that picking 8 = 0. 08, 110(0) = -10, nl(O) = -1,

n 2(0) ~ -0. 55 provides a time optimal solution for this problem. A plot

of this response is shown in Figure 2. Note in this problem the exact optimum
solution was obtained, but, in general, one would pick different F(x, y)'s to get

hetter abbroximations, .

>



%° =
X =y
b = ult) Jub| <1
1 1
Flxy) = 5 (- 3% FORy> 3
- 1
=0 FOR|yf <3
. lo0,12 1
= 2(y+2) FOR y 5-2
ol 1,2 ,3 , 6 4 5 6 1 8 9 10 o,
u=+1
- — —/u=-1
u=0

Optimal Solution of the Linear Harmonic Oscillator

Figure 2.
With Approximate Bounded Phase-Coordinates
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4,4 REMARKS ON THE APPROXIMATE BOUNDED PHASE -COORDINATE
PROBLEMS WITH INTEGRAL COST

As before, consider the linear control process

£) % = A(t) x + B(i) ult)

satisfying the conditions stated at the beginning of Section 4.1. As a cost

functional of control, consider

T
C(u) = g[x(T)] + j [f° (x,t) + h° (u,t)] dt
t
o
where T = fixed time > to and the real functions, f°(x,t) and h®(u,t), are

continuously differentiable and f°(x,t) is a convex function of x for each t.

The problem of optimal control is to pick an admissible controller, uf(t),
on [t ,T{ so that the response, X (t), of &) moves from x io a target
set, GCR™, at T, (G may be whole space) and minimizes C(u) with the

entire response, xu(t), contained in the closed convex restraint set, A.

As before, we introduce the convex differentiable function, F(x), satisfying

the conditions:

F(x) > 0ifx ¢ A

b

= 0ifx € A .

The approximation problem is obtained by adding F(x) to the integrand of the

cost functional, C(u), to obtain a new cost functional

T
C,) = g[x(T)] +[ [f°(x,t) + \F(x) + h°(u,t)] dt
T 1:o
=f [?‘(x,t) + h°(u,t)] dt, ’
t

(o]
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5

Here, N 2 0. If M\ is sufficiently large, then one would expect that the con-
tribution from the term, X F(x), can be small only if the response stays near
A or within it. The approximation problem is to find that controller, u(t),

which minimizes C)\(u) and steers to G¢C R™

We shall assume that h°(u,t) is convex in u for each t or that the controller

is bounded and h is a positive function of u for each t. In either case, the
previcus theory can be applied after slight modification by noting that ’f"’(x,t) =
f°(x,t) + X\ F(x) is a convex function of x for each t; since both f° and F

were convex functions, and by noting the contribution to x°(T) made by the

terms , h°(u,t). That is, the problem has now been cast as one which is covered
by the sufficiency results of Reference 24, which are also necessary [4] , and can

be obtained as a slight modification of the results of section 4. 2,

CONCLUSION

An approximate solution to linear bounded phase-coordinate control problems is
presented in this chapter. The method relies on the introduction of a positive
constant, B, which is a measure of the phase-trajectory lying outside the con-
straint set, A , in the phase-coordinate system. For this reason, the problem
discussed in this chapter is commonly called the soft bounded phase-coordinate

control problem.
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CHAPTER 5

MECHANIZATION OF NEUSTADT'S ALGORITHM
FOR TIME-OPTIMAL CONTROL ON AN ANALOG COMPUTER

5.1 INTRODUCTION
The technique described allows ''on-line' simulation of the time-optimal
regulator by adapting Neustadt's algorithm [ 18] to analog computation. The
procedure is an out-growth of attempts to realize bounded-phase coordinate
optimum controllers.

5.2 PROBLEM STATEMENT

Given the equations of the controlled system in the form of an n-th-order

vector differential equation

X = A(H)x + B(t)u(b) (90)

we seek a control vector, u*(t), of m components, which steers the system
state, x(t), from an initial state, X at time t = 0, to final state in which
all components of, x, are zero, with the finite time of transition, T, a mini-

mum. An additional provision is that

'uj(t)l <1; j=1, 2, ... m.

5.3 NEUSTADT'S STRATEGY [ 18]

The variation is parameters formula gives

t
x(t) = X(t)XO+X(t) fX_l(s)B(s)u(s)ds (91)
o

7



as a representation of the solution of Equation (90). The matrix, X(t), is
the matrix solution of the homogeneous part of (90) which becomes the iden-
tity matrix for t = 0. If x(to) = 0, multiplication of Equation (90) by X_l(to)
yields the formula
t
° -1
X, = + f X “(s)B(s)u(s)ds. (92)

o

This may be interpreted as producing the set of initial conditions, X from
which the origin can be reached in ty seconds by application of control function u(t)
on [0, to] . Taking the inner product of (92) with an n-vector n, yet to be

determined, we have

t
o
ST S j n - X—l(s)B(s)u(s)ds. (93)
o
By selecting
u(s) = Sgn[n X-l(s)B(s)] (94)

the expression given in (93) is maximized for each . The time-optimal

regulator for normal systems is assured [ 21] for a particular value, n = 7.

To obtain Neustadt's relationship, define

t
Z(t, m) =~fx‘1(s)B(s) sgn[n - X N(9B(s)] ds . (95)
(o]

Making use of (95), Equation (93) may be written

'
3
b
H

o n - Z(,n), whent = to: (96)
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Expression (96) may be written as

0 = n - [Z(to, n) + xo]. (97)

Equation (97) is satisfied by the n corresponding to the time-optimal regula-

tor for the initial condition, X Neustadt considered the function

f(t,n;xo) = n- [Z(tn) +XO], (98)

and proved the following properties:

(i) f(t, n; xo) is continuous in t and n .
(ii) f(t, n; xo) is strictly increasing with t for a fixed 7.

Further insight to the significance of {§8) can be gained by graphical arguments.
Using (92), it is possible to construct a graph of the set of all initial states from
which the origin can be reached in t seconds. Such a graph is shown in Figure 3
for t, <ty <t <t Selecting g arbitrarily, the corresponding Z_ (t, n) is
constructed in Figure 3. Examination.r of (98) reveals that f(t, n; xo) may be re-

duced to zero by either of two means:
(i) Causing the vectors, n and [ Z(t, n) + x| , to form a right angle,
or

(ii)  Reducing the vector [ Z(t, n) +x_] , to zero.

Returning to Figure 3, the vector, [Za(t, n) + xo] , 1s constructed for the
particular g, shown. It is apparent that the angle between Ny and [ Za(t, n)+

xo] (i. e., angle ) will be 90° for some ’cime,'c1 <t < ta Thus, the first of

“The discussion which follows assumes that f(t,- n; xg) is initially negative, which
is equivalent to saying that the angle between X5 and n is greater than 90°.



n

L

Z(ty M)

Figure 3. Set C(t) of Reachable Initial States
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two conditions necessary for (98) to be zero has been illustrated. It can be
further observed that the projection of [ Za(t, n) + xo] on m will be negative
for t < ta’ and will become positive for t > ta for a fixed X,

The second condition (i. e., reducing [ Z(t,n) + xo] to zero) is only possible
whent = to' In addition, Z(to, n; xo) must be coincident with negative X

which fixes the corresponding Mo

The vector, [ Z(t, n) + xo] , will be nonzero for all t # to, and the projection
of n will be outward or positive for allt > t . Therefore, t = t is the upper
bound of the zero crossings of f(t; n, x ) con51dered as a functlon oft. In
other words, t = t_ is the upper bound of w where w { T |f(T Xy = 0} .

and further t0 € w

x ) versus time for several values of nj, as obtained from the
phical argument, are shown in Figure 4.
IMPLEMENTATION

Using a circuit which permits maximizing Tew, the optimal controller corres-

ponding to a given initial condition can be obtained.

The Bang-Bang or Coulomb Friction Circuit driven by f(t, n; xo) can provide
an output of the form

Vit, n; xo) = e =k, for f(t, n; xo) < 0,
(BB) (99)

=0, for f(t, n; xo) > 0.
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By driving an integrator with the output of the Bang-Bang circuit, the output
voltage of the integrator will be of the form

U(t, n; xo) = el =kt, fort< T
(int)
(100)
= 0 +KkT, fort>T;
where T is a particular time such that f(T, n; xo) = 0. For a given initial

condition, X and a trial value, m, (100) is only a function of time. By changing
n and repeating the solution, it ispossible to obtain a set of curves, U(t, n; xo),
which are a function of the time at which f(t, n; xo) is zero. A graph of the set
of curves, U(T, n; xo) is shown in Figure 5. To generate U(T, n; xo) with the

computer, the form of (98) was modified to

f(t,nix) = n - x@ (101)
which is shown equivalent to Neustadt's expression by the following argument
Ifn(® = [XL()] "I, then

t
- -1
nt) -x@) = [XT(,():| 1no, [X(t) x, +X(t)j X “(s)B(s)u(s) ds] (102)
o
LaSalle [ 21] proves the optimal steering function to be of the form

us) = sgn[n® - XMX Ms)B(s)], 0< s<it,
which is equivalent to

u(s) = sgn[m, - x~1(s)B(s)] . (103)
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Substituting (103) into (102), we have

t
n@ - x(t) = ng [xo+j X-I(S)B(S)Sgnfﬂo'X_I(S)B(s)] ds, (104)
(o]
but
t
jx‘l (s)B(s) sgnfn_- X~ 1(s)B(s)]ds = Z (t, n; x,)-
[o]

Therefore, (104) can be expressed as

t . = . . 1 5
n(t) - x(t) n, [xo + Z({t, n; xo)], which (105)
demonstrates that f (t, =n; xo) = f(t, n; xo).

Advantage was taken of the repetitive solution capabilities of the REAC-C400
analog computer. In this mode, the circuitry functions such that during one-half
of a square-wave cycle the integrator capacitor terminals are '"shorted' to dis-
charge the capacitor, and during the other half-cycle the integrator is placed in ‘
"Operate'. Thus, the computer solves the program repeatedly at a frequency
determined by an external square-wave generator. The repetitive solutions are
then displayed on a large screen oscilloscope, such as the Electromec. By vary-
ing the initial values of nj(o); j=0, 1, 2, .. .m, a continuous display similar
to that of Figure 5 is available. The effect of each new setting of the elements

of n is immediately apparent and maximization of w(T) is facilitated with a maxi-

mum of interpretation required.

APPLICATION

The intended application of Neustadt's algorithm was in conjunction with the "'soft-
bounded" phase-coordinate problem, more properly termed ''the approximate lin-
ear time-optimal control process with bounded phase-coordinates' as discussed
in Chapter 4.
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The problem statement given in (90) is still applicable, with the additional
requirement that xj(t), j = 1, 2, . . .m remain within a given constraint

during its response.

The equations defining the specific case studied (i. e., an augmented har-

monic oscillator) are

3{0 = F(xz)

)'(1 = %,

>'(2 = =%+ sgnm,(t)
fy, = 0

n,o= My

. 3F (x,)
Ny = My -1, Hz—z‘

where
2
= 1 L i L
F(xz) = 3 (x2 - 2) , if Xg 2 5
- . 1
= 0, if |X2| < —i
2
S R N 1
g p g, ifxy = 5
With reference to Chapter 4, the parameters subscripted with a zero result

from augmenting the system to permit enforcing the ''soft boundary'. The aug-

mented system was believed to be normal; however, thisassumption later proved




to be invalid. The systems non-normality was initially indicated by the
potentiometer settings required to maximize the algorithm (i. e., N, had to

be zero, which corresponds to the unbounded case). The level of confidence

in these first indications was improved when attempts to determine the re-
quired initial values of the elements of n using grid networks were also un-
successful. Increments of Fg'o' over a range from 1 to 10 were used in the

grid networks search . The phase-coordinates of the state vectors were

plotied for each trial in the grid network. No trial combination within the grid
network resulted in switching or tracking along the boundary. Further refine-
ment of the grids was not considered worthwhile. These simulating results
warranted further analytic studies which proved that the coordinate, 7 (t),
vanished for a finite time while tracking along the boundary, leaving the con-
troller undefined and non-extremal. Having established that the controller

is undefined over a portion of the switching boundary invalidates the mechaniza-
tion scheme being used. It is interesting to note that the technique '"recognized"
this condition by only providing data for the unbounded case. Recall that normal
systems are required to have no component of {v- X “{t)B{t)] wvanish on any
interval, withn # 0[21].

A detailed treatment of the soft-bounded problem will be discussed in Chapters
6 and 7, since the applicability of the technique under discussion is void for non-

normal systems [ 18] .

In implementing the system of (99), it was observed that the solution obtained
with Ny = 0 was the correct solution to the unbounded problem. This result
was anticipated since the systems equations reduce to the unbounded case in that
configuration. Severalinitial conditions of the state variables were investigated,
and the required initial conditions of the adjoint vectors were obtained. It should
be observed at this point that the selection of initial conditions of the state vectors
was conditioned by the particular system of equations, and a desire to compare
the results obtained with those obtained in Chapter 3, Section 3. 10,for the same

system. The conditions investigated were in the range
1< xl(O) < 2, and
Xo (0) = 0.
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Figure 7. Phase-Plane Plot of the Linear Harmonic Oscillator
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The analog computer program used to simulate the set of equations of (99)
and implement Neustadt's algorithm is shown in Figure 6. Two examples
of the phase-plane plots are given in Figure 7. For these examples, the

time variations of individual parameters are shown in Figure 8.
CONCLUSION
1t is concluded that:

1) The technical is not applicable to the bounded phase-coordinate

problem as that problem is presently stated; thiswill be dis-

cussed further in Chapter 6.

2) On-line applications do exist for the unbounded phase-coordinate
problem.
3) Where applications exist, complete mechanization of the search

procedure (i. e., removing ihe operator from the loop) should be
considered. Open-loop versus closed-loop augmentation also has

interesting implications.

The results demonstrated that on-line time-optimal control could be obtained
for possibly higher than second-order systems when the plant dynamics are
slow, as in chemical reactor control problems where one or two minutes can
be spent in obtaining a feasible solution. Also, in such applications a digital
computer {of perhaps the Honeywell 200 class) could be programmed to seek
the minimum, and thereby completely mechanize the search procedure.

Further, the method as it stands could be used to obtain feasible solutions as

needed in training the feedback controller of the logic net mechanization [ 25} ,

or other such applications.
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CHAPTER 6
ANALOG COMPUTATION OF TIME-OPTIMAL CONTROL
FOR APPROXIMATE BOUNDED PHASE-COORDINATE SYSTEMS

6. 1 INTRODUCTION

Tre synthesis method for approximate bounded phase-coordinate time optimal
control discussed in Chapter 4 was studied on an analog computer. The results
indicated that the method cannot be directly implemented. This chapter gives

a detailed discussion on the subject.
As shown in Chapter 4, the subject problem can be stated as follows:

Consider a linear control process described by the system of differential

equations
x = A(t)x + B(t)u(t),

where the coefficient matrices, A(t) and B(t), are composed of known continu-
ous functions on the time interval, [to, tl] . Find an allowable controller,
u{t), which steers xu(t) from x att toa prescribed compact target set, G,

. . _ -
with x‘l’l(,l) < B and t to a minimum, where

1
t

1
X (t)) =ft0 F{x (t)] dt,

F(x) convex continuous differentiable function such that

0, if x remains within a given constraint set, A;

F(x)
# 0, otherwise.
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To solve the problem, the proposed method in Chapter 4 considers an augmented

2n+2 system of equations

(J'(" = F(x)

S) <x = A(t)x + B(t) sgn nB(t)
™ =0
noo=-nA@ - 2D
\

i { = =
with x°\to) 0, x(to) X s and T]"(to) < 0. Let

X = (x°, x),
n o= (rf, n),
and f = ;1[3{ - o],
vwhere
’_B-
0
10
o =

o
Then the system, S), could be solved on an analog computer by means of modi-

fied Neustadt's algorithm, as discussed in Chapter 5.

6.2 EXPERIMENTAL RESULTS
Two examples were studied on the analog computer:

(a) Pure inertia system 3’:1 =y, with A = lel <0.5
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F(x) ={0 lx,| <0.5
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0.5 (x, + 0.5) x, £-0.5 ,

Target =[g]
Various initial conditions, x(0), and different values of 8 were considered

on the computation. A set of typical phase-coordinate trajectories, with x(0) =
[(1) 5], B8 = 0.5, and various trials of n(0) is shown in Figure .9. Note that the
trajectory which supposedly corresponds to a time-optimal~ solution does not
pass through the origin, and the trajectory which ends at the origin does not
correspond to a time-optimal solution. Moreover, there is no indication show-

ing the effectiveness of the phase-coordinate constraint.

(b) Harmonic oscillator system ')'{1 tx, =y, with A = |x1| < 0.5

A time-optimal solution, as discussed in Chapter 5, is determined as follows:
select m°(0) and n(0) such that £(t) |t = 0)> 0. Integrate the system until

£(T) =0. Thus, for each set of n°(0) and n(0), there is a corresponding T.
Conditions that give maximum T correspond to a time-optimal solution.
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Figure 10. Phase-Coordinate Trajectories of the Linear
Harmonic Oscillator
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F(x) and the target are defined in the same forms as shown in example (a).
Figure 10 shows a set of typical phase-coordinate trajectories with g = 0. 5.

Note that for the case of x(0) = [260
the bounded phase-coordinate constraint is identical to that without the

constraint., For x(0) = [10 7] , the trajectory which supposedly corres-

] , the time-optimal trajectory with

ponds to a time-optimal solution does not pass through the origin. The
trajectory which ends at the origin, however, is not only non-time-optimal,
: . 3F' (%)
° 1
but also corresponds to an imoroper sign of n =% - The latter
violates either the requirement of convexity of F(x), in derivation of the
computational method, or the negative value of constant °, which is a

result of the Maximum Principle.

EXPLANATION OF THE RESULTS

The fact that the computational method could not be implemented directly
can be explained by an analysis of a numerical example. Consider the pure
inertia system as given in the previous section. Since x°(0) = x2(0) =0
and 1’ (0) < 0, then

i) =

f‘t:o = 0.517°(0) | + 1.5(0) <0

implies n(0) < - | %°(0) /3 < 0. Since n, = 0, hence n (t) is a negative

constant,
ol }
When |x2| < 0.5, the function F(x) = 0 and %x(x) = 0 so that
fi, = -m > 0. Sinceu(t) = sgn n(t), hence n,(0) < O for otherwise
the resulting u(0) = +1 would steer the system away from the origin. Thus,
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n 2(0) negative constant and

1‘|2(0) = positive constant.
Since xz(t) = -t for u{t) = -1, the trajectory will arrive at the phase-
coordinate boundary X, = -0.5att = 0.5. This is illustrated in Figure 11.

Note that nz(t) cannot change sign for t < 0.5. If it would, then the switch
of the control occurred too early so that the trajectory would not be able to
pass through the origin without crossing the other boundary, X, = 0.5, and

followed by at least two more switches of control.

Let nz(t ) = 0 at some t, > 0.5. Then 7, (t) is a parabola bending down-

ward for 0.5 €t <t_, smceFx(t)] = 0, 5[ (t) + 0. 5] = 0. 5[t+0 5]2,
t 1
oF = . = - ° “ - 2
ojs >x, dt o.s[t+o.5] and n,(t) !nlw)l 0.5| n°(0) | " [-t+0.5]

for 0.5 t Stl.

Fort = t + €, where € {8 a small quantity, nz(t) > 0, and hence uft) = +1.
Since xz(t) = +# -2t for ult) = +1,

jt 2F 4t = +0.5 [t -2t +0.5)% - 0.5[-t; +0.5° and

ox 1
t1 2
nyt) = In (01 +0.5 in°(0) | {[t -2t; +0.5)%2[-¢; +o. 5]2} which
indicates that n2(t) is now a parabola bending upwards for t > tl. Since

T\z(t) cannot change sign thereafter, the trajectory will not pass through the
origin unless the switch of the control occurs on the switching curve and,
in which case, the trajectory with the bounded phase-coordinate constraint

is identical to that without the constraint.
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6.4 CONCLUSION

From the preceding observation, it is concluded that the method proposed

in Chapter 4 cannot be directly implemented. It is reasonable to conjecture,
however, that the method is valid if the parabolic portion of Ny is tangent

to the horizontal axis (Figure 12) such that nz(t) = fb(t) = 0 for

tl <t < t2 and tl < t2. But this leaves u{t) = sgn nz(t) undefined on
te [tl, t2] which is eﬂquivalent to the introduction of a segment of singular
arc. For this case, f cannot be readily computed, and hence, the modified
Neustadt's algorithm given in Chapter 5 does not apply. Further study of

the behavior of signular arc is therefore recommended.
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CHAPTER 7

APPROXIMATION TO BOUNDED PHASE-COORDINATE
CONTROL PROBLEMS WITH INTEGRAL COST

7.1 INTRODUCTION

In Chapter 4, a short discussion of bounded phase-coordinate problems was given,
The motivation for this was the use of certain sufficiency conditions and the usual
method of handling bounded phase-coordinate problems by soft constraints introduced
through a penalty function. It was later realized that the method usedtohandle the
bounded phase-coordinate time-optimal problem was a different method, involving
the use of a transversality condition. The use of the transversality condition to
obtain a soft constraint appears to be a new way of handling this problem and has not
been completely developed and evaluated. It is the purpose of this chapter to

indicate the extent to which the theory for the integral cost criterion can be developed
along the lines of the previous theory for time-optimal controlwith the bounded

phase-coordinate,

7.2 PROBLEM STATEMENT

As inChapter 4, consider the linear control process
£) X = A(t)x + B(t)u, x(t)) = x , ueQ

where A(t) and B(t) are n by n and n by m matrices, having bounded and con-
tinuous elements on each compact time interval. (Q, the controller restraint set,
is assumed to be a compact convex set contained in R™. The usual notions for
compactness, convexity, and so on, for the real number space, R"”, will be used

throughout (see Reference 26 for details).
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The cost functional of control

Clu) = x(t) J’t { x(t), ] °[u(t), t]} dt,

where 'c1 is a fixed time > to’ and the real functions, fo(x, t) and n° (u, t), are
continuously differentiable, with £ and h° being convex non-negative functions

of x and u for each fixed t;and g is assumed to be convex in x and a C1 function.

The problem of optimal control considered here is to choose an admissible con-
troller, u(t)CQ, on the time interval, [to’ tl], so that the response of imoves
from the initial point, X at time, to’ to a closed target set, GCRn, at time
t,, minimizes the cost functional, C(u), and the entire response, X, (1), is

contained in the closed convex restraint set, ACRn.

EXISTENCE THEOREM, NECESSARY AND SUFFICIENT CONDITIONS
FOR THE OPTIMUM CONTROLLER

+ . e oy
We introduce the convex differentiable function, f™ l(x), satisfying the conditions:

n+1(x) >0, if x £ A,

=0, ifx e A.

It is at this point that we depart from the previous theory, which was to add

£ +1(x) by means of a Lagrange Multiplier A to the integrand of the integral part
of the cost functional and then argue that if X is sufficiently large the bound on the
phase constraint is approximately enforced when C(u) is minimized. Instead, we

prescribe a bound, B >0, and require

j il | 2 x ()] at <8.
o

Of course, one way of handling this added inequality is to use the method of
Lagrange multipliers, which leads back to the original formulation. We wish to
prove existence, as well as give necessary and sufficient conditions, so we will

not resort directly to such methods.
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Let ¥ = ¥y,
and xo = fo (X, t) + ho(u’ t):

with xo(to) =0 = xn+1(t0). We augment the system, £), by adding these two

equations, obtaining the system

0= fo(x, t) + ho(u,t)
S) x = A(t)x + B(t)u
.n+1 n+1
x =

f (x)

with initial data %, = Xt ) = [xo(to), x(t ), xn+1(to)] = (0, x_, 0).

[o] |
~ o n+l
Here X = (x ,x, X ).

The soft bound problem (approximation problem) is to find an admissible steering
function, u{(t)C on [t , fl]
{(x s X, n+1) ‘ 0 <x°

<00, xeG, 0 <x
g [x(tl)] . We hereafter only consider the soft bound problem.

, steering X(t) from x to the closed target set, G=

n+l <B} w1th minimum cost, C(u) = x (t ) +

Define the set of atta1nab111ty, K(t ), in variables, (x°,x,x" 1), to be the
collection of end points, x(t ), of responses,x(t), of S corresponding to all
admissible controllers, u(t), on [t , ] , with x(to) = xo. An admissible con-
troller, u(t), is any measurable controller belonging to the compact convex

. m
restraint set, QCR .

We now establish that ﬁ(tl) is a compact subset of Rn+2, assuring us that
optimum controllers exist. We also establish that the lower boundary, in the

(o) n+i

coordinates, x~ and X~ 7, is a convex surface, giving us a way of choosing

optimum controllers,

We will not work directly with the set of attainability, but with a set, the
vertical saturation of the set of attainability, which contains more points.
Later, it will be shown that the optimum points for our problem in the

vertical saturation set are also points of the set of attainability.
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Define the vertical saturation, Ev, of R(assume tl is fixed so we drop the

+ +
dependence on it) to be the sct of all points, (xo, X% 1), of R" 2 for which

, ~ +
there ecxists a point, (iyo, X, yn+1), in K, with yo x° yn+1 < x" 1. Because of the
positive nature of £, 'ho, and " 1, it is apparent that K (and therefore K)

+
are contained in the space, x° 20, X * 20 of R" 2

Theorem 1.

Consider the controlled process, §Z as above, with initial point (o,xo, 0)= ;o’

set of attainability, E, at time, t_, and compact convex controller restraint

1 ~
set, QCRm. Then, the vertical saturation, KV, of K is a closed convex set

in Rn+2

Proof :
To show that K_ is closed, consider a sequence of points, yk, in K converging
to y in R" 2. Since K is the vertical saturation of K we can fmd a sequency of

controllers, u( ) (t), on t ’tl , with responses, x (t), such that x (t ) =Yy
n+1l
k

u(k)(t), still denoted by k, converges weakly to an admissible controller, u(t)

(t ) S\}\ , and x (t ) < _ykn+1 We can further suppose that a subsequence,

C{, and the corresponding responses, xk(t) converge to x(t), asis done in

3

problems of time-optimal control [ 26] .

But also y° = lim inf xl(z (t ) =2 x° (t ) and y" *1 2lim inf ‘(k (t y = <7 1(tl)
which follow as 1n the proof of Theorem 8 of Chapte? III of Reference 26 and 1s a
general property of convex funct1ons Hence the response, [x ), x(t), x (t)]
leadb to an end point, [\ (t ), 31 X (t )] ofK Thus, (yo, Y, yn + ) lies in

Ix and so K is closed in R

o
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Note the orthogonal projection of K on the x-space, Rn, is just the compact

convex domain, K,of the time-optimal problem [ 26] .

To prove the convex1ty, we will show that if x1 and x2 are only two points
belonging to KV then the point, )\x + (1- )\)x is contained in KV for 0 =
A <1,

L.et, then, x1 and x2 belong to K (if they belong to K and not K take points
of K for Wthh they are the vertical saturation) and suppose uy (t) and u2(t)
steer to x1 and XZ’ respectively.

Define the controller, uy (t) = )\ul(t) + (l-x)uz(t), and calculate

t

1
X (tl) = é(t)x0 +j Q(t)Q(t)-l B(t) u)\(t) dt
t
O
= A () (-0 x, (¢)
Further
Y
x)\o(tl) =j £% [x, (0] +h% [u, (1)] at
t0
S)\x01+(1»)\)x20
and
t
l(tl) - f TS x, ()] dt
A
t
O
< >\x1n+1 + (l—)\)x2n+1

because of the convexity of f(,)ho, M 1,
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Using the property of the vertical saturation, we conclude that there do
not exist two points, (il, iz), with \¥; + (1-0) ¥, outside the set, K_,
as needed for nonconvexity.

1t is shown later that the optimum points of the vertical saturation set
for our problem are boundary points. We now characterize the boundary

points of ﬁv which belong to K in terms of maximal controllers.

Define u{t) on [ty tl] io be a maximal controller in case there exists

a nonvanishing, adjcint response, oty = [no(t), n(t), T}H_l(tﬂ of:

n o = constant < 0
. _ ar® a1
noo=  -m A{t) - o3 {x(t), t) - Ml 3% (x(t)).

constant < 0

T+
such that

n, h° [u(t),t] +n®)Btuld) = Max {n h%(u, 8 + B BB}
ue )
almost always on [to,t ] . Here, x(1) is the response of §)corresponding to

the con‘roller, u(t) on to,t and the initial data, (o, X o). A controller steering

U ~
tc a boundary point of a set, NCRn+2, is termed an extremal controller for N.

Theorem 2.

Consider the controlled system, S) as above, with initial point X, att,
compact convex controller restraint set, {), and closed convex vertical
saturation set, iv’ If u(t) 1~s a maximal controller, then u(t) is an ext’r;emal
controller foi both ﬁv and K. Conversely, if fl is boundary point of KV
belonging to K, the controller which steers from ?o to il is necessarily a

maximal controller.
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Proof :

Assume the admissible controller, u{t), stecrs x(t) from x ‘to a boundary
point, 3?1, of K v There exists a support plane, w1, of K v’ and hence K at x1
Choose 7} m to be a nonzero vector normal to ™ and d1rectcd into the halfspace
defined by m which does meet K (and hence does not meet K). Let A(t) on
[t ) ] with 7(t) = nl be the adJomt response corresponding to the admissible
controller, u(t). We wish to show that
nh° {u(t),t] + DB = j“‘};‘ (N h°(w, b + n(HBHW
€

almost everywhere on to,t The proof will be by contradiction, by supposing

1
that u(t) fails to satisfy this maximum condition on some closed set of positive

duration in [‘c st ]
o’ "1
Define u(t) on [to,tl] by

noh [u(t) t] + n(t) B(t)T (t) = Max ('r] h°(u,t) + n(t)B(tu).
ue(l

It is apparent that u(t) is bounded and can be chosen to be measurable as in
the Appendix of Chapter II of Reference 26. Let Il be a compact subset of
positive duration in t ,t, , where u(t) and G(t) are continuous and where

o + noho [u(t),t] + n(OBu(t) < n h° [Tl(t),t] + n (WB(HT (1)

for some o> 0. Pick a time, € Il’ so that the set, (1, 7+ ¢) f\I has
measure, g(l + 0(¢)), for all small ¢ >0, For given 0 > o, cons1der the

modified controller

uF(t) =U(t) on(1, T+ ¢) N1,
= u(t) elsewhere on tdtl‘
t1 dnx tl . - . ~
Calculate[ 0 £ at j [ N+ ]dt = Tt xe(tl) - nlt )%,
t t
ot © o
1 af 3 fn+1

o [{Tnwam - nas (X0, t] = n L 5 [xo]r x_ @
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+n, {fo [xe(t),t] +h° {ue(t), t]} + ) [A‘”Xe‘“ + B(t)ue(t)}

+Non {fnﬂ {xe(t)]ﬂ dat ,

tl de tl ~ o~ ~ il -y el
and J —cﬂ— dt =J [nx + ndet= 'q(tl) X(tl) - T}(to) X

t t

o o

1 o +1
{- nwA® - 3 k@] o, —g—f(n [x(t)]} x(1)

=fto

+ 1, fo[x(t),t] +h° [u(t),t]} + 7ft) {A(t)x(t)+B(t)u(t)}

- {fnﬂ ]} | .

Thus n (t,) ?{'e(tl) -TT(tl) %(tl) > ée[l + O(e)]
+ [:1 [no £© [xem,t] - gi;’ [x0. ] %0 - x() -1° [x0.1
Il

n+1 aftl +1 1)
+ nml{f [xe(t)] -5x [ [x.® - x(o] -£" [x¢t] J dt
Therefore, for ¢ sufficiency small
T X (4) > Tt K = Alt) X

contradicting the construction of i’ (tl) = m as the outward normal of
K_at%..
v 1

dix TXu
Conversely, calculate ain— and d dt , as above, and use the assumed

convexity of > and fn+1 to find
n(tl)X(tl) > n(tl)xu(tl)

where x is a response corresponding to any admissible controller, u(t)CQ,
on [’co,t1 , and X (1) is a response corresponding to a maximal controller,

Thus, for Mo S 0 =0, §(t1) belongs to the boundary of R, where the

* Mh+1
exterior normal vector ?]'(tl) has n_ <0, n

boundary of Rv' Q.E.D.

< 0, and therefore to the
n+1
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Lemma

The set of attainability, E(t )}, lies in some sphere, S(r) ={; X < r} , of

7
finite radius, r, for 0 s t2 <t < o,

Proof:

It follows immediately from the assumed conditions on A(t), B(t), ho, fo,

+
£ 1, and the compactness of the controller restraint set, Q.

+
Let r° - sup yo and 1 sup, yn+1

yeK veK

+1
By the Lemma, both ro and r" are finite. Defining the set,

M = {xo,x, 0l ES?QKV, x° < r°, R rn+1} (- Rn+2,

clearly, ’IZCM, and M is compact.

Theorem 3.

Consider the soft bound controlled process, 5), as given above., Assume
there exists one admissible controller, u(t)CQ, on [O,tl]n, steering 3° to

the closed target set, 6 = {xo,x, xn+1| xo < 00, xeG) X +1 <B},at time'tl.
Then, there exists an optimum controller steering %° to G, minimizing the

cost functional of control, C(u) = g [x(tl)] +x° (tl).

Proof

The continuous function, g(x) + xo, assumes a minimum on the compact
set, l\71”§, at, say, the point, o = (xo*, Xk, xn+1*). Since KCM, we must
only establish that ¥ ¢ IZ Fix x and xn+1 at xk, (xnﬂ)* and consider the
function, g(x*) + x°, on the set, MNG. The minimum point. X*, must be at
a boundary point of the convex set, I~{ , and hence M, since & involves no
constraint on xo. Because of the defiYﬁtion of the vertical saturation set,

K. it is true that this boundary point belongs to R (see Figure 13) (the

vertical saturation set contains everything to the right and above the point, X%).
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- X

n* n+1
r

Figure 13. Illustration of the Set of Attainability And An
Outward Normal Vector
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Theorem 4.

Consider the above soft bound controlled process, S) with cost functional
of control, C(u) = g[x(tl)] / f1 [f° +n °1 at
- tO

and restraint coordinate

Kt ) =[t1 41 4t < 8, B > 0.
to
Assume g(x) gCl is convex in Rrl and there exists an admissible controller,
u(t), on [to’ tl} , with response, X(t), of S) with X (t ) = R’ such that

<" 1(t } <B. Then, there exists a solution, x*(t), m(t) of

x = A(t)x + B(t) ux(t, n)
fo=en g{(o (X -, %ﬂﬂ (t, %) - nA(t)
with n(tl) = - grad g[x(tl)] s x(to) =
and either n_ <0, n ., < (t ) =B or Moty = 0, n, <0, xn+1(t1) < f3.

Here, u*(t, n) is defined by the maximum condition
Oux, t) + % = n° + Bt
noh”(we, 1) + nB(twk = Max [”o (u,t) + nB(thu].
ue Q)

Anoptimum controller is wk(t) = w* [t, n*(t)] with corresponding optimum

response x*(1).

Proof .

Consider the hypersurfaces, S s glx) + x% = ¢, in Rn+2, of the halfspace
-+
x" 1 <. There exists a umque hypersurface, Sm’ of this family such that

. ~ . . +
Sm is tangent to M, defined above, in the halfspace, xn 1 <B, and m is
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.4

the optimal cost. Let 'ﬁ*(tl) =~[no, n*(tl), Np+1| P€ @ nonzero vector normal
to Srn at some point, p eSmnK, of the halfspace, xn+1 <B, and let rf*(tl) be the
outward normal to M at p. As in the proof of Theorem 3, it is apparent that
Suclla point, P, exists. Then, Ny S 0, N+t S 0, (see Figure 13). But, also,
pedK and pe aK_V. Thus, u*(t), the controller steering to p, is a maximal
controller by Theorem 2. A careful consideration of Figure 13 gives the two

conditions on the end point. Q.E.D.

Remarks

~ o
. o ntljo< x <
In the case when we have steering to a target, G = {x s X, X !

n+
xeG, x 1

< B }_. with GG not the whole space as in Theorem 4, one proceeds
in a similar manner to fird necessary and sufficient conditions for optimum
control. The details are identical to those of Chapter III of Reference 26

for the same type of probiem,

CONCLTUSION

in this chapter, the existance as well as necessary and sufficient conditions
for the optimum controllier with integral cost are established. As in Chapter
4. the method relies onmeasuring the positive constant, 8, and the problem
under discussion is of soft bound type. In the discussions, the controller
restraint set, (), was assumed to be compact. However, it also appears that
results along the above lines can be obtained in the case when () is not compact.

The study of such cases is now underway.
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CHAPTER 8
CONCL USIONS AND RECOMMENDATIONS FOR FURTHER STUDIES

8.1 SUMMARY OF RESULTS

A fundamental requirement in the proofs of the existence theorems of optimal
controls in bounded phase-coordinate systems proposed by Chang [10] is the
compactness of the set of all ailowed ''control-and-path' pairs. This subject

was not clearly presented by Chang. A rigorous re-examination within the
framework of current mathematics revealed that sequential compactness is
guaranteed if the control restraint set is compact and the phase-coordinate
restraint set i compact and arc-wise connected. For linear time-optimal
control problems, a sufficiency condition* involving the maximum principle and
jump conditions in the modified adjoint solution was established. By the utilization
of this theorem, the optimal trajectories in the phase-coordinates can be obtained
by the usual ''backing out" procedure. Conditions under which the optimal
solution is unique were established for the case when the phase-coordinate
constraint sets are strictly convex but not necessarily compact and also for the

case when they are polyhedra.

By introducing a positive constant which measures the excursions of the
phase-coordinate trajectories outside their closed convex restraint sets, a
method of approximate solution was derived for the time-optimal problem.

The excursion constant can be made as small as desired so that the resulting
solution approximates the solution that would be obtained by the method of using
jump conditions in the modified adjoint solution. The necessary and sufficient
conditions were established which are relatively easy to apply. The approx-
imation to the optimal control problem with integral cost functional was also
discussec and an existence theorem as well as necessary and sufficient conditions

for the control were derived,

* A necessary condition can be deduced from Neustadt's recent results [27] ’
which ic identical with the sufficient condition.

112




8.

2

.

An analog computer program to implement Neustadt's algorithm [1 8] was devel-
oped. The program warked well in the sense of on-line computation for the
time-optimal control problem with no constraints in the phase-coordinates, but
failed for problems with constaints. An analysis of the program and the
bounded phase-coordinate control problem revealed that the difficulty lies in

the existence of singular arcs in the adjoint solution which correspond to the
segments of the phase-coordinate trajectories lying on the boundries of their
restraint sets. Such a situation requires a trial computation procedure with
extremely rapid repeated rate which rules out the possiblity of on-line operation

for space vehicles using currently available facilities. -

RECOMMENDATIONS FOR FURTHER STUDIES OF THE BOUNDED
PHASE-COORDINATE CONTROL PROBLEMS

As shown in Chapter 3, the time-optimal trajectories in the bounded phase-
cecordinates can be obtained for linear systems. A natural research problem,
then, is to extend the results to linear optimal control systems wiih integral cost
and to nonlinear time-optimal systems. New necessary and sufficient conditions
for optimal control, from which the optimal trajectories of these controlled
systems may be obtained, are thus required. Any results generated from these
studies would have vast applications. Moreover, it may serve as a method to
check the approximate solution shown in Chapter 7. Another area open for invest-
igation is to develop computational algorithms for optimal controls for practical
usage. Unless this is done, relaistic design of the controller is not efficient.
This problem is now under investigation at Honeywell Inc., Systems and
Research Division.

As to the approximate solution, a problem which involves the non-compact
restraint set for the controller is also of importance. The study of this problem
is also in process. For the implementation of the method, an investigation of
the computational algorithms for a hybrid computer is recommended. The
results may lead to a possible on-line operation.
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Finally, a discrete approximation of the problem also has potential application.
This field is far less developed. Nagata, et al., [17] studied the time-optimal
problem by extending the results of Desoer and Wing [28, 29] . The method is
quite involved. On the other hand, methods utilizating quadratic functions
were developed for the case where the phase-cordinates are not bounded

[30, 31, SZT

systems is well worth investigating,

An extension of this method to bound phase-coordinate
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